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We study numerically bubbles bursting at a free surface and the subsequent jet formation. The
Navier–Stokes equations with a free surface and surface tension are solved using a marker-chain
approach. Differentiation and boundary conditions near the free surface are satisfied using
least-squares methods. Initial conditions involve a bubble connected to the outside atmosphere by a
preexisting opening in a thin liquid layer. The evolution of the bubble is studied as a function of
bubble radius. A jet forms with or without the formation of a tiny air bubble at the base of the jet.
The radius of the droplet formed at the tip of the jet is found to be about one tenth of the initial
bubble radius. A series of critical radii exist, for which a transition from a dynamics with or without
bubbles exist. For some parameter values, the jet formation is close to a singular flow, with a conical
cavity shape and a large curvature or cusp at the bottom. This is compared to similar singularities
investigated in other contexts such as Faraday waves. © 2002 American Institute of Physics.
#DOI: 10.1063/1.1494072$

I. INTRODUCTION

Bubbles bursting at the water surface are a familiar ev-
eryday occurrence. They also take part in important pro-
cesses of transport and exchange across liquid/gas interfaces,
caused by the ejection of jets and various kinds of small
droplets. These are involved in the transfer of heat, mass and
various contaminants between the oceans and the
atmosphere.1 Indeed, breaking waves cause the formation of
a large number of bubbles beneath the water level. The effi-
ciency of the resulting mass transfer, including the transfer of
CO2 depends on the initial properties of the ejected droplets
!size, initial velocity".

The phenomena producing aerosols during the bursting
of a bubble are of two kinds: the first is the rupture of the
film separating the bubble from the atmosphere. This film
atomization can produce several hundred droplets of around
a micrometer in diameter which probably represent a large
fraction of the transfers.1 Since the scales involved during
this rupture are of the order of 100 nm, a physical description
is outside the scope of continuum fluid mechanics. Indeed,
long-range molecular forces such as van der Waals forces or
electrostatic repulsion must be taken into account.2

The small cavity remaining after the film rupture col-
lapses under the effect of both surface-tension and buoyancy.
This collapse gives birth to a narrow vertical jet which even-
tually breaks into one or several droplets !see Fig. 1". This
phenomenon constitutes the second aerosol production pro-
cess and is the principal topic of this paper.

These aerosols are of a different kind: they are ejected
vertically—which is not the case for film aerosols—and their
diameter is about one tenth of the size of the initial cavity,
i.e., about 100 %m for a typical bubble radius of one milli-

meter. Depending on their mass and initial velocity, the drop-
lets will either fall back into water or evaporate.

The topic of this paper is the investigation of the bubble
evolution after the initial film rupturing, including the jet
formation. A numerical method solving the Navier–Stokes
equations and describing the free surface with high precision
is used. Previous numerical studies of these phenomena have
been made postulating mostly inviscid fluids; however, a
modified boundary element method taking into account small
viscous effects was also used.2–4 A Navier–Stokes simula-
tion was shown in Ref. 5, with a VOF-type method in a
regime where the bubble is very deformed.

In most previous studies the effect of film atomization on
jet birth was assumed to be negligible. Few comparisons
were made with experimental data. Some experimental stud-
ies were also conducted to measure quantities such as jet
velocity,6–8 size of the first ejected droplet, height at which
the droplet detaches from the jet, or height reached by the
droplet. These experiments are fairly difficult to conduct, be-
cause of surface contamination which modifies significantly
the free-surface boundary condition and the surface tension
coefficient.

As our numerical results will demonstrate, the jet forma-
tion is in many cases singular and self-similar. Singular jets
forming at a free surface have already been observed and
studied in different contexts. Indeed, in the bubble-bursting
problem as well as in several other free-surface flows, one
observes the formation of a conical cavity, with a very high
curvature or cusp at its base. In some cases a small bubble is
trapped at the bottom of the cavity. A thin narrow jet subse-
quently forms in a self-similar manner. This phenomenon
was observed experimentally in Faraday waves by
Longuet-Higgins9 and Lathrop,10 in the development of the
jet inside a bubble containing a sink flow in the numericala"Electronic mail: zaleski@lmm.jussieu.fr
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study of Ref. 11. For bursting bubbles the conical cavity may
be seen in the experiments and simulations but the singular
character of the jet formation has not been investigated to
our knowledge. The phenomenon may also be seen in the
cavity formed by falling raindrops.12–15

The evolution of the conical cavity has been studied by
Longuet-Higgins13 as a special case of a family of hyperbolic
surfaces: conical surfaces were shown to be a special case of
the hyperbolic surfaces of Ref. 9. These conical surfaces are
preserved by the velocity potential

&!A! t "r2P2!cos '", !1"

where r is the spherical radial distance, P2 the Legendre
polynom of second degree and ' the polar angle measured
from the north pole, which yields the velocity field

()!A! t "!"x ,"y ,2z ", !2"

where A(t) is an arbitrary function. Indeed any conical free
surface in this flow remains conical. For positive A the cavity
opens in time as in the experiment.

Of course the actual flow is not exactly conical. The
bottom of the cone is rounded, and oscillates in shape as
capillary waves converge towards the bottom of the conical
surface. At some instant in time the bottom may develop a
cusp, followed by jet formation. This process is obviously
singular at least for some values of the parameters, but there
is no agreement among the above cited publications on the
exact nature of the singularity.

Indeed one may inquire into the specific scaling form of
the singularity. The Euler equations without surface tension
and gravity will in principle admit self-similar solutions of
the form

&!x,t "!!t"t0!m*!x!t"t0!"n", !3"

where * is an arbitrary scaling function and t0 is the singu-
larity time. The solution may be valid before and/or after the
singularity time. The exponents should satisfy m!2n"1.
Indeed with this condition all the terms in the Bernoulli
equation balance. However, when surface tension is added,
the only way to form a self-similar solution that balances
inertia and surface tension is by selecting n!2/3. This is
because the only length scale that can be built is rc

!(+t2/,)1/3 where + is the surface tension and , the density.
Then the similarity variable is -!x/rc and the flow velocity
diverges like t"1/3 near the singularity for a fixed value of the
similarity variable -. This idea is at the basis of 2/3 expo-
nents found for instance by Miksis and Keller.16 This type of
scaling, was applied by Zeff et al.10 to observations of jet
formation in Faraday waves. The leading order term for the
velocity potential is of the form

&!C!t"t0!1/3r1/2P1/2!cos '", !4"

where P1/2 is the Legendre function of order 1/2.
However, a series of alternate theories for singular free-

surface flows and in particular the conical cavity and jet for-
mation was proposed by Longuet-Higgins. He has shown
that the type of flow described by Eq. !2" had a divergent
velocity with A(t).!t"t0!"1/3 thus a t"1/3 divergence for a
fixed value of the real !unscaled" distance r.13 In this solution
the scaling is not fixed by a balance with surface tension.
Instead, surface tension is added as a perturbation to the
conical solution, in the form of a sink flow.13 The Longuet-
Higgins solution yields an angle for the conical cavity of
2'!109°5, in good agreement with the numerical observa-
tions of Ref. 12. Another self-similar solution for jet forma-
tion was found numerically by Ref. 11 obtaining yet another
scaling, for the case of jet formation inside a bubble. The
potential is then approximated by

&!A! t "r1/4P1/4!cos '", !5"

where P1/4 is the Legendre function of order 1/4.
This paper is organized as follows. We first describe the

general context of this study, the nondimensional numbers
controlling the problem and the scaling laws deduced from
dimensional analysis. We then briefly introduce the numeri-
cal method we use and its main advantages. A first compari-
son with experimental profiles is presented. Finally, a de-
tailed parametric study is conducted using a simple initial
shape for the cavity and neglecting gravity. We measure the
volume of the first ejected droplet, the velocity of the jet and
the maximum pressure encountered on the axis of symmetry
and discuss the results. In some circumstances, a tiny bubble
is formed at the base of the jet. The self-similar flow occur-
ring when the conical cavity and the cusp form is investi-
gated.

II. INITIAL CONDITIONS AND EXPECTED SCALING
LAWS

Given the small size of the bubbles we are interested in
!diameter is around one millimeter", some assumptions can
be made regarding the parameters governing jet birth. The
first idea is to suppose that the cavity is motionless at the
initial time. Experiments have shown that, even in the ab-
sence of surfactants, the bubble can stay at the free surface in
a quasistatic equilibrium for a few seconds.17 The bubble is
then separated from the atmosphere by a thin liquid film, the
cavity being subject to surface tension and buoyancy forces.
A model for this static configuration is a more or less de-
formed bubble adjacent over part of its surface to a film of

FIG. 1. Jet produced by the collapse of a spherical cavity. The end droplet
will eventually detach due to the Savart–Plateau–Rayleigh instability.
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negligible thickness. This configuration may be computed, or
obtained from the experimental data as in the case reported
in Ref. 8.

When the film reaches a critical thickness !about 100
nm" after draining slowly, it breaks more or less rapidly !de-
pending on the presence of surface contaminants". It is then
possible to run simulations by taking the current, static con-
figuration and removing the thin film. While we do this in
one case, the drawback is that a sharp corner exists at the rim
of the neck or juncture between the film and the bulk liquid.
The small length scales involved may create numerical con-
vergence problems. Moreover, as we show below, small
length scales are generated independently of initial condi-
tions by the steepening of capillary waves and jet formation.
Keeping the small length scales in the initial conditions
makes it more difficult to observe the intrinsically generated
small scales. We thus decided to drastically smooth the rim
of the neck. In most calculations, the initial shape was de-
fined as follows. A spherical cavity is separated from the
atmosphere by a circular hole, the border of the hole being a
circular rim !see Fig. 2".

The collapse behavior depends only on four physical pa-
rameters: the kinematic viscosity /, +, , and the acceleration
due to gravity g. Out of the four physical parameters only
two length scales can be defined, the capillary length Rc
!(+/,g)1/2 and the viscous-capillary length R/!,/2/+ . In
pure water Rc!2.7mm and R/!0.014%m, respectively. If
the radius of the bubble R#Rc , capillary effects are pre-
dominant compared with the gravity effects; if R$R/ , vis-
cous effects are expected to be negligible compared to the
capillary ones. For R/#R#Rc the phenomenon is domi-
nated by surface tension and inertia.

We also decided to neglect the effect of gravity which is
a correct approximation for R#Rc . Therefore, only the

Ohnesorge number Z!,/2/+R governs the phenomenon
and dimensional analysis gives velocity in the form

V!,R
+

!F" ,/2

+R # , !6"

where F is an unknown function.
Whenever R/#R#Rc , we also expect that viscosity

plays no role. The only way to eliminate viscosity is to sup-
pose that the function F has a finite, nonzero limit C when /
goes to zero. The nondimensional velocity of the jet then
behaves like

V
V/

$C" RR/
# "1/2

, !7"

where V/!+/,/ .
Similar arguments lead to a scaling law for the nondi-

mensional pressure of the form

P
P/

.C!" RR/
# "1

, !8"

where P/!+2/,/2.

III. NUMERICAL METHOD

The choice of the numerical method is conditioned by
the terms we need to solve accurately. In our problem, the
first term of interest is surface tension: being the main driv-
ing force in the parameter range we consider, it is important
to model it correctly. Given the large density ratio between
water and air we can moreover assume that the influence of
the gas phase is negligible.

According to these two assumptions, we used a numeri-
cal method which solves the full axisymmetric Navier–
Stokes equations in a fluid bounded by a free surface while
allowing an accurate description of the interfacial terms such
as surface tension. This method has been documented
elsewhere18,19 and has been shown to produce accurate quali-
tative and quantitative results when compared with both the-
oretical and experimental data.

In short, a regular Cartesian fixed grid is used. Massless
particles !markers" advected by the flow define the position
of the interface. Linked by cubic splines, they describe accu-
rately the geometry of the free surface. For cells which are
not cut by the free surface, a classical finite-volume scheme
is applied. For the cells in the vicinity of the interface, finite
differences cannot be computed since velocities are not de-
fined in the ‘‘gas’’ phase. Therefore, an extrapolation of the
velocity field near the free surface on the other side is nec-
essary. This extrapolation must take into account the bound-
ary conditions on the free surface !in particularly the nullity
of the tangential stress". This is done by using a least-mean-
square procedure constrained by the condition of vanishing
tangential stress. Comparisons with theoretical results show
that this approach gives an accurate description of the vis-
cous dissipative terms associated with the boundary condi-
tions.

The pressure on the boundary is obtained as follows. The
local curvature is estimated from the spline reconstruction.
The local normal viscous stress is estimated from the above

FIG. 2. The initial configuration in the ‘‘large rim’’ case. The grid is a 5122
Cartesian grid.
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least-squares procedure. Then the pressure is obtained from
the normal-stress boundary condition. The pressure on the
boundary serves as a boundary condition for the Poisson
equation for the pressure. This equation is in turn solved
using a multigrid algorithm.

Most computations have been made on a 5122 grid, ex-
cept the comparison with the experimental profiles from
MacIntyre, which has been made on a 10242 grid and some
selected computations which were refined to 10242 grids.

IV. COMPARISON OF THE NUMERICAL RESULTS
WITH EXPERIMENTAL PROFILES

We have first initialized the calculation with a realistic
shape, and taken into account all the physical parameters,
i.e., capillarity, viscosity and gravity. The goal was to com-
pare the results with a series of shapes published by
MacIntyre.8 The initial shape of the free surface has been
obtained from a numerical calculation based on the works of
Toba.20

Figure 3 illustrates the experimental and the computa-
tional results. The numerical parameters are /!10"6 m2/s,
+!0.072 kg/s2, ,!1000 kg/m3 and the volume of the bubble

is the same as the one given by MacIntyre: 2.57 %l. The
computational time is about one day on the 10242 grid. The
overall agreement is very satisfactory. In particular capillary
waves are well described, in contrast to the earlier published
results using boundary integral methods.2,3 We believe that
this lack of capillary waves is due to the strong smoothing
needed to avoid numerical instabilities in boundary integral
techniques !and probably also to an insufficient spatial reso-
lution, which is also limited by numerical stability". In our
method, real, molecular viscosity is present and the fine grid
we use allows in principle to solve the small spatial scales of
the capillary waves.

The time interval between images is the same as the one
given by MacIntyre, i.e., 1/6000 s. A difference in time be-
tween profiles can be seen, even if the shape is very similar.
A possible explanation is the presence of surface contami-
nants in the MacIntyre experiment. These contaminants
could change the surface tension, even modify its value lo-
cally, therefore changing the behavior of the free surface
through generation of Marangoni currents. They could also
make the interface partially or entirely rigid, changing the
free-surface boundary condition.

Solving the full Navier–Stokes equations, we have ac-

FIG. 3. Time sequence of the jet for-
mation in a 2.57 %l bubble bursting at
a free surface. Top, experimental !Ref.
8" and bottom, computational results.
Profiles are 1/6000 s apart.
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cess to vorticity which can, as we will see later, have an
important effect even on very small structures in a low vis-
cosity fluid such as water. Figure 4 shows the vorticity iso-
lines during the collapse of the cavity. The vorticity is con-
fined to a thin boundary layer before the jet birth. Later on
however !see Figs. 5–7", a vorticity cone is entrained below
the jet and the shear stress there is comparable to that in the
narrow jet. This detachment of vorticity illustrates the forma-
tion of a downward jet, already observed by Boulton–Stone
and Blake with their modified boundary integral method.2,3

V. RESULTS OF THE PARAMETRIC STUDY

A set of computations have been made for radii between
10"6 m and 10"2 m (102%R/R/%106) with the initial shape
described above.

The evolution of the profiles is very similar to that
shown on Fig. 3. A conical cavity forms with a train of
capillary waves converging to the axis. The number of cap-
illary waves depends strongly on the Ohnesorge number: the
higher this number, the higher the number of capillary waves
converging to the base of the cavity. Figure 8 shows a large-
radius case with a large number of waves !see also Fig. 11".
In some cases, especially near R/R/!103 the jet became

very thin !Fig. 9" and the local radius of curvature smaller
than the grid size. The calculation then becomes inaccurate
and has to be stopped.

For some parameter values we observe a tendency to
trap a bubble on the axis of symmetry just before the forma-
tion of the jet. We have searched systematically for bubble
entrapment. There are two competing changes of shape: the
jet formation is heralded by a change of curvature at the base
of the cavity, while the bubble pinching is preceded by the
formation of an overhang in the interface, i.e., the height
h(r) of the interface becomes multivalued. Thus our crite-
rion for incipient bubble formation is as follows: !a" The
height h(r) becomes steep, then multivalued, and !b" the
curvature at the base remains positive. This is only an indi-
cation that a bubble will be trapped before the jet forms as
shown in Fig. 10, but we need such a crude criterion because
the bubbles are very small for the kinds of grids we have. We
found a first bubble entrapment region for 576%R/R/
%2016, the second one between 57600%R/R/%288 000.
Other such regions at higher values of R/R/ are likely, but
difficult to observe numerically. One indication is the exis-
tence of large trains of capillary waves at large R/R/ as
shown on Fig. 11.

The topology of the interface changes when a bubble is
trapped. This pinching is a singular event akin to the pinch-
ing of a gas cylinder by the Savart–Plateau–Rayleigh insta-
bility. We shall call it a pinching singularity to distinguish it

FIG. 4. Vorticity isolines during the collapse of the bubble for the same
conditions as in Fig. 3 at time t!1.12 ms. The maximum vorticity isoline
value is 4.80 s"1 and the level difference between the isolines is about 1.07
s"1.

FIG. 5. Vorticity isolines during the collapse of the bubble for the same
conditions as in Fig. 3 at time t!1.24 ms. The maximum vorticity isoline
value is 4.80 s"1 and the level difference between the isolines is about 1.07
s"1.

FIG. 6. Vorticity isolines during the collapse of the bubble for the same
conditions as in Fig. 3 at time t!1.4 ms. The maximum vorticity isoline
value is 4.80 s"1 and the level difference between the isolines is about 1.07
s"1.

FIG. 7. Vorticity isolines during the collapse of the bubble for the same
conditions as in Fig. 3 at time t!1.56 ms. The maximum vorticity isoline
value is 4.80 s"1 and the level difference between the isolines is about 1.07
s"1.
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from other free surface singularities. To pursue the calcula-
tion numerically beyond a pinching singularity, one should in
principle perform surgery on the marker chain and continue
the simulation. This is however difficult because the problem
slightly changes in nature: the pressure inside the small
trapped bubble cannot be set to atmospheric pressure but
should in principle depend on the bubble volume through
some equation of state. This changes markedly the nature of
the calculation. Moreover the trapped bubbles are extremely

small and very difficult to resolve without mesh adaptation.
Thus in most cases we continued the simulation without
marker surgery. When the trapped bubble is very small, the
marker chain reorganizes itself spontaneously and the calcu-
lation proceeds. In some cases, as in the rightmost bubble
entrapment region, it seems that the effect on the dynamics is
small. In other cases, as in the leftmost entrapment region,

FIG. 8. Capillary waves for R/R/!144 000. The times of the successive
profiles are, respectively, t!0.137, 0.859, 1.858, 2.752, 3.449, 3.983, 4.387,
4.689, 4.832 ms.

FIG. 9. The initial phase of jet formation as seen in two simulations. For the
large bubble !dashed line, R/R/!144 000" the jet is relatively wide and well
resolved numerically. For smaller bubbles !solid line, R/R/!720" the jet
may become extremely thin.

FIG. 10. Beginning of the entrapment of a bubble by the collapsing cavity,
for R/R/!105 !1.4 mm bubble".

FIG. 11. The velocity of the interface on the axis for R/R/!2.88&105. The
oscillations correspond to the arrival of a train of capillary waves. For this
large value of R/R/ capillary waves are numerous and of short wavelength.
The very large excursion in velocity may be due to the existence of a further
bubble entrapment region, however the very small scales involved make
numerical resolution difficult.
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the calculation has to be stopped or provides unreliable re-
sults which were removed from the quantitative analyses be-
low.

We have redone all the calculations for a different initial
condition. The overall configuration is the same as on Fig. 2
but the rim thickness is halved. All the above qualitative
results are identical. In particular, we do not observe any
steepening of the capillary waves or thinner jets as we reduce
the rim size. This is a clear indication that the small length
scales we observe form spontaneously, independently of ini-
tial conditions.

A. Jet velocity

A first quantity of interest is the velocity of the jet, or the
ejection speed of the first drop. Figure 12 shows the nondi-
mensional velocity of the jet, measured when the top of the
jet reaches the mean water level. Circle symbols correspond
to the larger rim thickness as on Fig. 2 while triangle sym-
bols correspond to thinner rims. Apart from a vertical shift,
the measured velocities are very similar. This shift may in
part be explained by the fact that we measure the jet velocity
at the mean water level for both cases, which is at a different
distance from the base of the two cavities.

For a large range of radii !between 2&104 and 106 times
the viscous-capillary length R/", the numerical results are in
good agreement with the inviscid scaling. For small radii the
velocity starts decreasing as R decreases. For the smallest
radii we have investigated the cavity relaxes to a flat surface
shape without jet formation.

The regions where bubbles form at the base of the jet are
indicated as vertical lines in Fig. 12. In the leftmost region,
around R/R/!103, for the reasons discussed above, there is
a gap in data points. It is thus possible that much higher jet
velocities may be reached in that region.

B. Maximum pressure on the axis of symmetry

We have computed the maximum pressure on the axis of
symmetry when the jet reaches the mean water level. Figure
13 shows this pressure and a fit in (R/R/)"1. Once more, the
numerical result is in good agreement with the scaling law
for radii between 2&104 and 106 times the viscous-capillary
length. We also remark a small jitter about the straight line
on the right-hand side of the curve, perhaps as a result of the
singular behavior in the bubble entrapment region. Note
again that in the left-hand side of the curve we could not
reliably calculate pressure.

C. Radius of the first ejected drop

Experimental data obtained by Spiel et al.7 tend to show
that the radius of the first ejected drop is about one-tenth the
radius of the initial bubble.

We have obtained this radius from the numerical simu-
lations as follows. The computation stops when the jet thick-
ness reaches the size of one computational cell. The jet rup-
ture will occur soon thereafter. The volume enclosed by the
free-surface between this point of minimum thickness and
the tip of the jet is then a good approximation of the volume
of the ejected droplet. The equivalent radius Rd is defined as
the radius of a spherical droplet with the same volume.

Figure 14 shows Rd /R . For large R/R/ we obtain a lin-
ear trend Rd00.13R which is consistent with the experimen-
tally observed value of R/10. This linear behavior is consis-
tent with the viscosity-independent regime of Eqs. !7" and
!8" in which the only length scale is R. On the other hand,
there is a large fraction of the data where this regime does
not hold and the ejected drop radius is much smaller than
R/10. Notice again the gap in values around R/R/!103.
There the jet was too thin to be well-resolved numerically,
and the actual droplet size may be much smaller. Varying the

FIG. 12. Non-dimensional jet velocity as a function of the nondimensional
bubble radius. The two regions between vertical straight lines correspond to
the radii for which a bubble is trapped at the base of the jet.

FIG. 13. Maximum pressure on the axis of symmetry when the jet reaches
the mean water level. As in the previous figure the bubble entrapment re-
gions are marked.
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initial condition has little effect, except at small radii where
the thinner rim leads to a larger droplet.

VI. SINGULAR JET FORMATION BY CURVATURE
REVERSAL

The formation of a thin, high-velocity jet in and around
the first bubble entrapment region leads to suspect the exis-
tence of a singularity. The scaling !3" yields

h!u ,t "!! t0"t "2/3f !u! t0"t ""2/3", !9"

&!u ,v ,t "!! t0"t "1/3*!u! t0"t ""2/3,v! t0"t ""2/3", !10"

where h is the surface elevation and u!rs sin ' the distance
to the axis of symmetry !rs being the spherical radius". We
rescaled the radial and vertical coordinates of the surface
points by (t0"t)2/3 for R/R/!720. We determined t0 by
fitting two of the rescaled profiles onto one another. The
results are shown on Fig. 15.

All the profiles have been translated vertically in order
for the point on the axis of symmetry to be at the same
vertical coordinate. The rescaled profiles superimpose well at
small values of the similarity variable -. The shape of the
profiles closely resembles the experimental and numerical
profiles in other types of flow.10,12,15 However at a large dis-
tance from the singularity the cone angle is about 73°. This
should be compared with the angle of the cavity seen in the
McIntyre data shown on Fig. 3. There, on profile 6 we mea-
sure an angle of 68°, a small difference with our calculations.
In contrast, the other physical processes discussed in the in-
troduction yield relatively larger angles.

The finite viscosity should also introduce a discrepancy
with the theoretical similarity solution. It seems however that
its effects are small in that case.

In Ref. 9 it was shown that for Faraday waves there was
a connection between bubble entrapment and singularities. In

our case the picture seems different. The self-similar solution
!10" is observed in the entire first bubble entrapment band.
On the other hand, this solution is not seen in or around the
second band of bubble entrapment, where we should in prin-
ciple also have a singularity. However the shape of the inter-
face is very different in that case !Fig. 16" and a superposi-

FIG. 14. Ratio of the radius of the first ejected drop and the radius of the
initial bubble as a function of R/R/ .

FIG. 15. Comparison between successive profiles made non-dimensional
using the scaling -!x/(t0"t)2/3 described in the text. Left, unrescaled pro-
files. Right, rescaled profiles. There the opening angle of the cavity is
around 73°. Since the numerical method uses adaptive time stepping, the
profiles are not separated by equal time intervals. The first time distance
from the singularity is t0"t!32.2 ms, the last one is 7.67 ms.

FIG. 16. Shape of the interface on the edge of the second bubble formation
region at R/R/!57 600. In that case a rescaling of the type shown on Fig.
15 could not be found. As in the previous figure profiles are not separated by
uniform time intervals. The time of the first profile is t!1.284 ms, the last
one is t!1.298 ms.
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tion using the above rescaled variables could not be found. A
possible explanation is that the conical cavity associated with
the singularity is present here only on the large scale as seen
on Fig. 10. The convergence of small-scale capillary waves
is not able by itself to generate a self-similar conical flow.
Thus the conical flow would be at least as important as
bubble formation in producing the surface-tension driven
self-similar scaling.

A tantalizing possibility is the existence of further bands
of bubble entrapment and singularities to the right of the
second band. While bubble entrapment is observed in some
cases, details of the dynamics are not well-enough resolved.
It is likely that bubble entrapment and cusp singularities are
related to the amplitude of the converging capillary waves.
As viscosity is reduced, ever more capillary waves are ob-
served to converge on the axis. For very large values of
R/R/ , waves having both short wavelength and small am-
plitude are formed.

VII. CONCLUSIONS

We have presented a numerical study of the bursting
process of bubbles at a free surface. The scheme used was
based on an accurate description of the free surface with the
help of a markers chain. This method has shown good capa-
bilities to resolve small capillary waves. The large scale fea-
tures of the dynamics, the pressure and final droplet radius
may be predicted with accuracy, except near the first bubble
entrapment region near R/R/!103. The predictions are
quantitatively in agreement with experiment: the angle of
opening of the cavity is similar to the angle observed in the
experiments of MacIntyre and the size of the droplet at the
tip of the jet is close to the experimentally reported size.

The measurements of jet velocity near R/R/!103 show
a surprisingly large velocity. The interface shape scales with
a characteristic length r.!t"t0!2/3 predicted by the balance
of surface tension and inertia. The shape of the interface
resembles shapes found in other jet-forming flows and cusp
singularities, but has quantitative differences such as the
opening angle of the conical cavity.

The connection of this scaling with bubble entrapment is
less clear. We found the scaling in a wide region. The occur-
rence of self similar flow and an approximate singularity is
not connected to the exact boundary of a bubble entrapment
band. We also found bubble entrapment transitions which
were not associated to the !t"t0!2/3 scaling. Finally the angle
of the conical cavity agrees with the experimental data for
bursting bubbles, but not with the angles seen or predicted in
other flows. This indicates that other types of singularities,

corresponding to different topologies or initial conditions,
may be observed. Further work should explore in detail the
nature of these singularities using for instance mesh refine-
ment.

Also of interest would be a study of the influence of the
initial shape of the bubble. We have shown that a factor of
two change in the rim thickness had no qualitative effect, and
very little quantitative effect on the collapse process. How-
ever other changes in the initial condition may cause a
change in the position of the various singularities. In other
words, for a given radius, it would be possible to reach a
singularity by changing the shape of the bubble.
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