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Simulations of the failure of cohesive granular steps with varying intensity of the contact adhesive force are presented.
The simulations are compared with experimental and numerical study of wet shear flows13,20, computing the appar-
ent friction coefficient. We observe consistent behaviours. We reproduce the dependence between the macroscopic
cohesion and the contact adhesion2,11 observed experimentally for sticky polymer-coated grains, as well as the range
of friction explored15. Focusing on the interface between moving and static material, and assuming a linear failure,
we infer the orientation of the failure plane with the horizontal. We disclose a non-monotonous evolution with the
intensity of the contact adhesion. Assuming an ideal Coulomb material allows for proposing an interpretation to this
non-monotonous behaviour. Although the systems are past incipient failure, we consider an edge of material at equi-
librium, for which the failure angle is related to the internal frictional properties of the material. In this framework, the
non-monotonous evolution of the failure orientation may hint at a cohesion-induced weakening mechanism, by which
stronger contact adhesion involve weaker friction.

I. INTRODUCTION

One enduring difficulty in describing the behaviour of gran-
ular media lies in their ability to adapt external forcing by
changing behaviour, from flowing like a gas to resist shear
like a solid1. Adding adhesion between the grains further ob-
scures the picture: clogging in flows and size-dependent sta-
bility threshold mix up with effective viscosity and material
properties in a way still to be clarified. Because cohesive gran-
ular materials are causing many problems in manufacturing
techniques, significant work has been carried out in the engi-
neering community to describe the various behaviour of co-
hesive material and characterise their properties2–10. Powders
are mostly involved, namely very fine grains for which strong
contact adhesion stems essentially from van der Waals forces.
More academic considerations have also prompted numerous
works11–14. The requirement for measurable well-constrained
quantities often means using larger grains sticking together
through capillary forces, which implies that weaker adhesive
forces are accessible. Recently, the trade-off between cohe-
sion control and cohesion strength has been mitigated by the
design of a sticky polymeric coating, thus opening the way
to more quantitative measurements at both low and high con-
tact adhesion, and covering a large interval of macroscopic
cohesion15.
In this context, discrete numerical simulations can be of great
help. Adding adhesive forces in the simulation contact model
actually lead to unexpected outcome. Remarkably, Mandal
et al (2020)16, applying a smooth Discrete Element Method
(DEM) approach, uncovered the role of the contact stiffness
and restitution in the cohesive behaviour of the granular mat-
ter. Thereby they stress the need for the definition of an ef-
fective cohesion, in which contact adhesion does not play the
sole part16. In the same line, non-smooth Contact Dynamics
(CD) simulations show that the effective cohesion of granu-

lar samples increases with the mean duration of the contacts,
embedded in the computational time step which reflects the
non-smooth nature of the contact phenomena17,18.
Consistent simulations allow for probing systems behaviour
over a large range of parameters. For instance, the effect of
contact adhesion on the macroscopic cohesive properties of
the material can be explored11–13,19–23. This allows for dis-
cussing the initial theoretical model of Rumpf (1970)2, revis-
ited in Richefeu et al (2006)11, predicting a linear relation be-
tween the cohesive strength, the structure of the packing and
the contact adhesive force.
Studying the structure of the packing is made easier by nu-
merical approaches, giving access to the details of the pack-
ing arrangements, showing an increase of the density of con-
tacts with adhesion strength, and a decrease of the solid
fraction12,19,20,23,24. The latter coincides with a strong ex-
pansion of the material and the emergence of stabilised loose
structures when contact adhesion becomes large compared to
the system average pressure24,25.
The apparent friction µ∗ of the material can also be computed,
showing consistently an increase of µ∗ with the macroscopic
cohesion13,20,24,25. The study of Iordanoff et al (2005)26 dif-
fers nevertheless: a non monotonous behaviour, with a de-
crease following the increase was observed, for large values of
the cohesion. On the experimental side, Gans et al (2020)15,
who estimated the Coulomb friction, did not observe any sig-
nificant variation of the later with the contact adhesion.
Most works addressing the behaviour of cohesive granular
matter adopt a stationary, uniform configuration as annular or
planar shear flow, simplifying the computation of mean aver-
aged quantities over well-defined flow regimes. The config-
uration adopted in this study contrast with these conditions,
since we are interested here in the failure of cohesive columns,
which implies neither a uniform nor a stationary flow.
Beside, while most works on granular columns, including the
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collapse of cohesive material, concentrate on the run-out be-
haviour or the deposit shape after the collapse27–32, the present
work focuses on the first instant of the failure. Assuming the
failure to be a straight line opens an interesting way to ex-
plore the internal friction properties of the system. Although
the hypothesis of a straight failure is a crude assumption if
considered in the light of geomaterial science33, it is never-
theless consistent with laboratory observation of the failure
of model cohesive granular material34, as well as continuum
simulations23,34.
In the following, we first discuss the choice of a failure cri-
teria allowing for proposing a chronology of the instability,
and the identification of the signature of the failure plane. We
then evaluate the effect of the strength of the contact adhesion
on the failure orientation, observing a non-monotonous be-
haviour. Computing the stress state of the simulated columns,
and considering the equilibrium of an ideal Coulomb mate-
rial, allows for questioning the mean behaviour of the granu-
lar matter in terms of internal friction. More specifically, we
discuss the likeliness of a cohesion-induced weakening mech-
anism.
The numerical cohesive failures are presented in section II;
the Contact Dynamics method and set-up are introduced in
section II A, while II B details the unfolding of a failure. The
identification of a robust criteria for characterising the failure
event is discussed in section III, and the effect of adhesion
strength on failure properties is presented. The stress state of
the columns is analysed in section IV, and a Coulomb equi-
librium is considered in section V. The hypothesis of an ideal
Coulomb material is discussed in section VI, together with the
possibility of a weakening mechanism induced by cohesion.
The results are summarised in section VII.

II. COHESIVE FAILURES

A. Details of the simulations

a. Simulation method A Contact Dynamics algorithm
was applied to simulate simple two-dimensional (2D) cohe-
sive systems17,35,36. The grains are circular beads with a di-
ameter randomly chosen in the interval [4.10−3m;6.10−3m],
and a mean diameter d = 5.10−3m, to prevent crystalline or-
dering. Each contact is made cohesive through the introduc-
tion of a negative (i.e. tensile) force threshold −Fc in the Sig-
norini’s contact graph, which specifies the acceptable values
for the contact normal force N. Either the distance δ between
the grains is strictly positive, corresponding to a gap, and the
contact force N is zero. Either δ = 0, implying a contact, and
N can take any values such that N ≥−Fc compatible with the
equations of dynamics. In addition, an Amontons-Coulomb
friction law is implemented, involving the contact coefficient
of friction µc. The tangential force threshold is supplemented
with the adhesive force threshold: sliding is permitted when
the tangential force has reached µc(N +Fc). The microscopic
coefficient of friction is not varied: µc = 0.2. The grains also
interact through inelastic collisions, with a coefficient of resti-
tution set to zero. Their volumetric density is ρ = 0.1kg.m−2.

t1

t2

t3

t4

t∞

FIG. 1. Successive snapshots of the initiation of a failure in a co-
hesive granular step with a contact adhesion Bog= 30. The grey
colour scale shows the grains cumulative displacement in the inter-
val ]rth : 1.4rth], where rth = 0.1d. Time shown are, from top to
bottom, t1/T = 0.10, t2/T = 0.11, t3/T = 0.12, t4/T = 0.17 and
t∞/T = ∞, T =

√
H/g = 0.1515 s.

A comprehensive presentation of the CD method will be
found in Radjai & Richefeu17.
The adhesive force threshold Fc is given in number of grains
mean weight through the introduction of a granular Bond
number Bog

24,37:

Fc = Bog mi j g, (1)

with mi j = 2( 1
mi

+ 1
m j
)−1, and i and j are the two grains

in contact. Hence, the cohesive properties of the simulated
systems will be set by the choice of the Bond number
Bog= Fc/mg, giving the maximum adhesive resistance of
contacts comparing to grain weight, which seems a sensible
option since the failure sole driving is gravity. It is how-
ever a mere description of the contact adhesion, and not a
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measurement nor an estimation of the macroscopic cohesive
properties of the systems, which will be discussed in section
VI.
Unlike numerical works modelling wet cohesive granular
flows and describing cohesion as the result of capillary
bonds11,13,20,25, we do not assume a specific mechanism to
induce contact adhesion. In particular, we do not assume
a debonding or rupture distance for a cohesive contact to
be lost. On the contrary, we assume adhesive force to be
short-ranged, so that a cohesive contact is lost as soon as
it opens. We simply make them sticky by allowing contact
forces to exist in a tensile state. In that sense, our numerical
systems are closer to the “controlled-cohesion granular
material“ of Gans et al (2020)15 than to the “wet granular
material“ of Richefeu et al (2006)11.

b. Generation of initial states The systems are gener-
ated by deposition under gravity of 5572 circular grains in
a rectangular container. The grains are initially cohesionless
with a weak contact friction µc = 0.2, thus forming a dense
packing with a volume fraction of φ ' 0.82. When the sys-
tems have reached equilibrium, and all the grains are at rest,
a large adhesive contact forces is applied in order to sinter
the structure (Bog= 100, corresponding to a yielding height of
roughly 50d).

When launching the collapse simulation, the right wall
closing the container is removed, and the Bond number is set
to the desired value (Bog∈ [0,60]). The systems thus reach the
specified state of cohesion by decreasing the adhesion at ini-
tially sintered contacts, rather than increasing the adhesion at
initially cohesionless contacts. In this way, we are ensuring
that the failure is not induced by weaknesses in a contact net-
work initially incompatible with cohesion.
The diameter of the grains is randomly chosen in the interval
[4.10−3m;6.10−3m], with a mean diameter d = 5.10−3m, to
prevent crystalline ordering. The random function assigning
the sequence of diameters allows for the generation of funda-
mentally different, independent initial states in terms of grains
and contacts arrangement, yet with identical macroscopic di-
mensions. Following this procedure, 11 initial states were
generated, and 11 independent runs could be performed for
each value of the cohesion studied, totalling 132 independent
runs, and allowing for the estimation of error bars.
The systems are bounded on the left hand side by a rigid
vertical wall (Figure 1). The columns have an initial height
H ' 45d and a width R ' 120d, namely an aspect ratio
a ' 0.37. This squat geometry allows for the generation of
failures far enough from the left wall so that they remain un-
affected by its presence.

B. Unfolding of a failure

At initial time t = 0, the right-hand-side wall is removed,
and the columns are left to fail and spread onto a horizontal
plane made rough by gluing grains on it (Figure 1). Because
the present work is interested in the failure onset, and not
on the ensuing spreading, we focus on the first instants of

the evolution, recording the system state every ∆t = 10−3s.
The computational time step is dt = 2.10−4 s, coinciding
with a mean grain overlap between 3.10−3d (for Bog= 0) and
4.10−3d (for Bog= 60).

The Bond number is successively set to Bog= 1, 2, 3, 4, 5,
10, 20, 30, 40, 50 and 60. In addition, the non-cohesive case
Bog= 0 is also considered.
The column height H ' 45d of the system, and the
combination of contact adhesion explored, coincide with
unstable states as studied in Abramian et al 2020 for similar
systems23. If we suppose that the yielding height Hy satisfies
Hy/d ' 0.5Bond , as observed in23, the systems studied here
range from H/Hy ' 1.5 for Bog= 60, to H/Hy ' 8 for
Bog= 10. For smaller Bog numbers, the predicted yielding
height is smaller than 5d. In that finite-size limit, the defi-
nition of a yielding height itself, according to a continuum
picture of the systems, is no longer straightforward.
Figure 1 shows an example of the early instants of a failure,
for Bog= 30. The present paper focuses on the analysis of sys-
tem properties for a failure evolution corresponding roughly
to the first four pictures. They coincide with a quasi-static
part of the systems evolution, with a mean velocity of the
order of ∼ 10−2√gH (not shown).
The later stages of the evolution are nevertheless discussed in
relation to the evolution of the stress tensor in section IV.
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FIG. 2. Number of grains Nth whose cumulative displacement ex-
ceeds the displacement threshold rth in the course of time, for three
values of rth, for a contact adhesion Bog= 30. The error bars show
the corresponding standard deviation computed over 11 runs.

III. FAILURE CHARACTERISATION

In this section, we give the details of the method applied
to detect the occurrence of the failure both in space and time.
Because one aim of the study is to quantify the effect of cohe-
sion onto the failure characteristics, the criteria must be valid
and must carry the same information for any intensity of the
contact adhesion. We explain here how this is achieved.
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A. Defining a displacement threshold
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FIG. 3. Distribution of displacements over a time interval [0,T ], as a
function of the displacement value rth, and the gaussian approxima-
tion with A = 90, r0/d = 0.044, and σ = 0.1; for Bog= 2.

A simple way of characterising the occurrence of a failure
in a system of a few thousands grains is to track the displace-
ment of the grains, without presuming the location of the dis-
placement, nor its orientation. To this end, one needs to define
a displacement threshold to separate those grains which have
moved from those which will be considered static, consider-
ing that very small rearrangements in the bulk coexist with
larger failure-induced motions36.
For illustration, we show the behaviour of the simulation se-
ries with a contact adhesion Bog= 30 for three values of the
displacement threshold rth. We consider rth = 0.05d, rth =
0.20d, and rth = 0.50d. We denote ∆ri the cumulative dis-
placement of each grain i. For each value of rth, the number
of grains Nth whose cumulative displacement ∆ri exceeds rth
is measured. The behaviour of Nth with time is displayed for
Bog= 30 in Figure 2, averaged over 11 independent runs; the
error bars show the corresponding standard deviation.
We observe, in each case, a sharp step-like evolution, with a
distinct quick increase, which we identify as the onset of sta-
bility loss and the occurrence of a failure. A rapid saturation
follows, which coincides with the flow of detached material
running away with no significant number of additional grains
further displaced beyond the value of the threshold.
Small values of rth also probe diffuse motion of grains in the
bulk, and induce large error bars. On the contrary, error bars
nearly vanish for large displacement threshold. Yet focussing
on large values of rth also means that you miss out the early
stages of the failure, with a risk of probing the erosion induced
by the failure, rather than the failure itself.
To elect a value of rth allowing for discriminating between
diffusion-like motion and failure-induced motion, the distri-
bution of displacements f over the time interval [0,T ] is con-
sidered. We compute the number of grains displaced in in-
tervals [rth,rth + 0.001d], normalised by the total number of
grains: f (rth) = δNth/Np = (Nth(rth+10−3d)−Nth(rth))/Np,
for rth varying between [0,5d]. The outcome for a small value
of contact adhesion Bog= 2 is plotted in Figure 3.

We observe that a gaussian behaviour is an acceptable approx-
imation up to rth/d ' 0.07, bespeaking a diffusion-like dy-
namics. Beyond rth/d ' 0.07, the distribution deviates from a
gaussian trend: additional small motions, presumably induced
by the failure, contribute to the distribution. From rth/d ' 0.1
onwards, the gaussian function vanishing suggests that small
diffuse motion in this domain are caused by the failure dy-
namics only. In the following, to make sure that we do filter
out all diffuse motion in the system, we chose twice this value
to characterise the failure, namely rth/d = 0.2. Because more
intense contact adhesion tends to shift the distribution towards
smaller displacements, the threshold value rth/d = 0.2 is also
adequate for larger values of the Bond number.

B. Identifying the failure chronology
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FIG. 4. Variations of the number of grains having overpassed the
displacement threshold rth = 0.20d in the course of time, in the case
of a contact adhesion Bog= 30. The onset time ton, the peak time tmax,
and the estimated failure time tfail, are also shown. (T =

√
H/g).

The smooth evolution of Nth with time allows for the iden-
tification of the onset of the stability loss, but not exactly the
occurrence of a well-defined failure.

A natural choice is to detect an inflection point in the evo-
lution of Nth, simply plotting

∆Nth = Nth(t +∆t)−Nth(t)

as a function of time, namely the instantaneous number of
grains passing the displacement threshold rth (∆t = 1.10−3).
For illustration, the first moments of the evolution of ∆Nth
for rth = 0.20d and a contact adhesion Bog= 30 is plotted
in Figure 4. A peak value – corresponding to the inflexion
point– clearly comes out, after a rapid ascent bringing
an increasing number of grains beyond the displacement
threshold. A slower descent follows, corresponding to more
localised motion involving fewer and fewer newly mobilised
grains.
We define the time ton at which motion onset is detected
(∆Nth > 0), and the time tmax at which the peak (maximum)
value Nmax is reached. Both ton and tmax are specific for each
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simulation. We find that they take well-defined values for
each cohesion intensity. For instance, ton/T ' (0.111± 8%)
and tmax/T ' (0.140±5%) for Bog = 30.

Singling out the best instant to characterise the failure
occurrence is however difficult. The instant tmax of the
peak value seems an obvious candidate. However, tmax
coincides with an early state where a modest number of
grains is mobilised. Moreover it does not offer a well-defined
reproducible pattern for all values of the cohesion.
Hence we prefer to focus on a later stage of the evolution,
when the failure has somewhat settled, and the number of
newly mobilised grains has fallen from 80% of its maximum
value. We denote the corresponding time tfail. For the example
case Bog = 30, we find tfail/T ' 0.157± 5.7%. The graph in
Figure 4 may give the feeling that tfail is already at the end tail
of the failure process; and certainly some grains mobilised
at tfail are responding to the beginning of the propagation of
the failure rather than being a picture of its onset. However,
plotting ∆Nth against the evolution of the mean grain velocity
〈V 〉/√gd shows that tfail is still in the very first stage of the
failure (not displayed). This can also be inferred from Figure
1, showing that the time interval in which tfail falls (between
t3 and t4), corresponds to imperceptible system deformations
to the naked eye. Hence we do not expect the effect of failure
propagation to be dominating.

C. Failure geometry

We now consider the position of the grains whose cumu-
lative displacement ∆ri exceeds the threshold value ∆ri ≥ rth
at time tfail. We then focus on the position of the grains at
the interface between mobilised grains (∆ri ≥ rth) and static
grains (∆ri < rth), and consider that this interface forms a cor-
rect proxy of the shape of the failure.
An example is given in Figure 5 for the system displayed in
Figure 1. We observe that the interface can be approximated
by a straight line, the slope of which gives an estimation of the
failure orientation α with the horizontal. The assumption of
a linear failure is certainly in contradiction with observation
of geomaterials behaviour33,38; yet it is consistent with ex-
perimental observation of cohesive granular failure. The co-
hesive granular material simulated in this work has no claim
to resemble geomaterials. Straight lines being a quite conve-
nient geometry to confront hypothesis, assuming linear fail-
ures seems a reasonable option.
The slope of the interface in Figure 5-b) is −1.90, with a re-
gression standard error of 2.3%. Figure 5-c) shows the posi-
tion of the grains displaced in the interval [rth,rth(1+15%)] at
time tfail for the same simulation, confirming that the interface
between mobilised and static grains is a reliable signature of
the failure geometry.

This analysis, discriminating between mobile and static
grains applying a displacement binary criteria, resembles the
outcome from image correlation technics. The latter, used
in34,39,40, reveal linear failure in collapsing cohesive columns.
Continuum simulation of cohesive granular failures also
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FIG. 5. a) Position of the grains whose cumulative displacement
∆ri exceeds the threshold value rth at time tfail: ∆ri ≥ rth (in black),
b) corresponding linear regression of the interface between static
and mobilised region defining the failure orientation, c) position of
the grains displaced in the interval [rth,rth(1+ 15%)] at time tfail
(grey shade).

reveal linear failure geometry in32,34.

D. Quality of the linear approximation

Contact adhesion changes the morphology of the failures.
The shear band associated to small values of contact adhesion
are wider, and less localised than those associated to larger
contact adhesion. A a result, the linear approximation of the
static/mobile interface shows larger standard error in the re-
gression procedure for smaller contact adhesion (not to be
mixed with the standard deviation measured from the set of
values of α in each Bog simulation series). This can be seen in
Figure 6, where the averaged asymptotic standard error (ASE)
associated to the regression process in each simulation series
is plotted against the value of the contact adhesion.
Figure 6 also shows the worst and best case scenario from all
132 simulations. The worst case scenario (from simulation se-
ries with Bog= 3) exhibits a linear approximation with a rather
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FIG. 6. Mean assymptotic standard error (ASE) of the linear approx-
imation of the static/mobile interface as a function of contact adhe-
sion Bog. The best case (error of 1.26% with Bog= 50) and the worst
case (error of 6.32% with Bog= 3) taken from all 132 simulations,
are shown for illustration.

poor performance, yet not typical. Indeed, the associated er-
ror (6.32%) definitely overpasses the mean ASE for the set of
simulations with Bog= 3, which is 4.27%, and by far the mean
ASE for all the weak adhesion interval Bog∈ [0 : 10], which is
3.71%. The best case scenario on the contrary exhibits a very
neat line, which is more representative of the adhesion inter-
val Bog∈ [20 : 60], if not strictly typical. Indeed, the associated
error (1.26%) stands out less in this interval, which exhibits a
mean ASE of 2.33%.

E. Cohesion and failure slope

Following the steps described above, we analyse all 11
independent simulations in each of the 12 simulations series
in the adhesion interval Bog∈ [0 : 60]. For each run, we
estimate the orientation of the failure with the horizontal α .
We also compute the corresponding standard deviation in
each simulation series. The outcome is displayed in Figure 7.
The first comment is that the error bars are large, showing
the dispersion of the data. This is not a completely surprising
fact for dry granular matter, for which static angles of repose,
or avalanche size measured as the hysteresis angle, also
exhibits a comparably large dispersion41. A second comment
is that the amplitude of the contact adhesion seems to have no
noticeable effect on the dispersion of the results, although it
does affect positively the linear approximation of the failure
(see subsection III D above).
The non-monotonous behaviour seems nevertheless a well-
defined feature, with the slope of the failure increasing with
contact adhesion for smaller values of the latter, but decreas-
ing for stronger contact adhesion. In the following, we will
discuss these results in terms of the frictional properties of
the material, computing the apparent friction and considering
a Mohr-Coulomb approach of cohesive granular media.
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FIG. 7. Failure orientation with the horizontal α as a function of
the contact adhesion Bond number Bog. The error bars show the
corresponding standard deviation.

IV. COMPUTING THE APPARENT FRICTION

The failure and collapse of unconfined granular columns
are strongly non-uniform and non-stationary events. This sig-
nificantly affects the evolution of the stress state of the sys-
tems, as discussed in what follows.

A. The stress tensor
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FIG. 8. Time evolution of pressure Ps, Pk and P computed from the
static, kinetic and total stress tensors σ s, σ k and σ , here averaged
on the simulation series with Bog= 30. The shaded area shows the
failure time interval (see text).

Stresses are computed following the classical micro-
mechanical definition, including forces transmitted both by
long-lasting contact interactions, and short-lived collisions in-
duced by velocity fluctuations20. These two contributions,
quantified by the static stress tensor σ s and the kinetic stress
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with Bog in both time intervals.

tensor σ k, form the total stress tensor σ :

σ = σ
s +σ

k,

σ =
1
V ∑

c∈Nc

fc⊗ rc +
1
V ∑

p∈Np

mpδvp⊗δvp,

where fc is the force transmitted by the contact c and rc is the
center-to-center vector, mp is the mass, δvp is the velocity
fluctuation of grain p, Nc and Np are the number of contacts
and grains respectively over which the summation is made, V
is the volume over which the stress is computed, and ⊗ is the
dyadic product.
Figure 8 shows the pressure computed for each stress tensor
σ s, σ k and σ , computed as the sum of the eigenvalues of
each tensor, and denoted respectively Ps, Pk and P. The case
Bog= 30 is chosen here for illustration. We observe a sudden
jump of the static pressure Ps at the start of the simulation.
This coincides with the sudden loss of cohesive contacts
and the emergence of newly formed contact following the
removal of the right-hand-side wall. We also see that the
kinetic pressure Pk has a weaker contribution. It becomes
however non negligible when 0.5 . t/T , coinciding with
the more dynamical part of the failure, when the pile starts
collapsing. As a result, the total pressure P is dominated by
the static stress in the first instants of the simulation, being
equal or similar to Ps, but starts reflecting the kinetic stress as
the material fails, at a later stage.
These features are shared by all simulations for any intensity
of contact adhesion. However, the stronger the adhesion, the
less significant the kinetic stress. Figure 9 shows the ratio
of the static pressure Ps to the total pressure P as a function
of Bog, averaged over two different time intervals. The first
interval t/T ∈ [0 : 1.3], or “collapse interval“, spans the whole
duration of the simulations, from the failure to the start of
the spreading of the detached material. The second interval

t/T ∈ [0.1 : 0.3], or “failure interval“ (shown in Figure 8), is
focussing on the early instants of the failure, when the evolu-
tion is essentially quasi-static. We observe for both interval
how adhesion favours the contribution of the static stress to
the total stress state, with Ps/P increasing with Bog. More to
the point, we see that the stress state is largely dominated by
the static stress in the failure interval t/T ∈ [0.1 : 0.3], where
velocities, and thus kinetic stresses, are nearly zero. In the fol-
lowing, we will consider this failure interval t/T ∈ [0.1 : 0.3]
to evaluate the apparent friction associated to the failure onset.
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Khamseh 2015

FIG. 10. Apparent friction µ∗ computed in the failure time interval
t/T ∈ [0.1 : 0.3] and in the collapse time interval t/T ∈ [0 : 1.3], as
a function of the reduced pressure P∗. The data from13,20 are also
reproduced.

B. The apparent friction µ∗

The apparent friction µ∗ is defined as the ratio of the devia-
toric stress Q to the pressure P, both computed as functions of
the eigenvalues of the total stress tensor σ : µ∗ = Q/P. Figure
10 shows the apparent friction µ∗ measured and/or computed
for sheared samples of wet granular matter as a function
of the reduced pressure P∗ in Khamseh et al 201520 and in
Badetti et al 201813 (see? for details). The reduced pressure
is defined as the ratio of the system characteristic pressure
(or normal confining stress) and the characteristic adhesive
stress, namely comparing the cohesion with the mean stress
level of the system13,20. In the simulations discussed here,
presenting unconfined failures, the only pressure stems from
gravity. We thus define the reduced pressure P∗ as the
ratio of the gravity-induced pressure seen by the centre of
mass of the packing 1

2 ρφgH (where φ is the solid fraction)
divided by the contact adhesive stress Fc/d, thus giving
P∗ = (2φH)/(πdBog)' 23/Bog.
The simulations apparent friction µ∗, computed over the
failure time interval t/T ∈ [0.1 : 0.3], is displayed in Figure 10
together with the data from13,20. Note that we have artificially
defined P∗ = 100 for Bog= 0, in order to allow for comparison
with the very low cohesion data from13,20. The behaviours are
very comparable in terms of dependence on P∗, exhibiting a
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marked increase with 1/P∗. However, the values of µ∗ of the
simulations are much weaker, with µ∗ ' 0.125 for P∗ → ∞

and µ∗ ' 0.4 for P∗ → 0, instead of 0.33 and 0.87 observed
by20 for instance.

One may invoke a difference of contact friction, set to µc =
0.2 in the present simulations. However, the data from13,20,
using respectively µc = 0.3 and µc = 0.09, both coincide with
a larger apparent friction. Hence, the value of the contact fric-
tion does not provide any explanation.

Another source of discrepancy could be the flow regime
in which the apparent friction is measured. While Khamseh
201520 and Badetti 201813 are considering flowing material
under shear, the stress state of the simulations presented here
is essentially measured over a static state. However, the flow
inertial number I investigated in13,20 spans a large interval in-
cluding very small values: I ∈ [10−4,5.10−1], showing a con-
tinuity of behaviour, so that the gap between static and flowing
regimes is bridged.
Interestingly though, in the present simulations, the apparent
friction becomes larger when computed over the collapse in-
terval t/T ∈ [0 : 1.3], where the contribution of the kinetic
stress becomes non-negligible (plotted on Figure 10). This is
consistent with the observation of friction increasing with the
inertial number for dry granular matter42. In our case, con-
sidering the collapse interval where the kinetic contribution
is non-negligible, brings the apparent friction P∗ → ∞ from
µ∗ = 0.125 to µ? ' 0.2. This latter figure is consistent with
the deposit slope of ∼ 11.5 deg after the system has spread.

More relevant to friction might be the contact model cho-
sen for simulating the granular media. Beside the differences
between implicit CD and explicit DEM methods inherent to
the algorithms,13,20 are considering wet systems, where adhe-
sive forces are capillary bridges. An essential feature of this
type of adhesive interactions is the introduction of a debond-
ing (or rupture) distance, at which the attractive force van-
ishes. The existence and extension of this debonding distance
was shown to play a significant role in the value of the appar-
ent friction20. By contrast, our cohesive samples are simple
sticky beads, with short-ranged adhesion, for which attractive
forces vanish as soon as contact is lost. In that sense, our sys-
tems resemble more the cohesion-controlled granular material
designed by Gans et al (2020), for which no capillary bonds
were observed15. Consistently, the present numerical obser-
vations are closer to the variations of friction with the contact
adhesion observed experimentally by Gans et al, spanning a
range of friction between 0.2 and 0.5 for a Bogvarying between
5 and 50? .

V. A COULOMB EQUILIBRIUM MODEL

Assuming the cohesive granular systems to be an ideal
Coulomb material gives us means of questioning the failure
orientation α in terms of the material internal friction angle43.
We consider a simplified equilibrium configuration along a
linear failure following23,34,44. Although this geometry does
not render the complexity of geotechnical observations, it re-

FIG. 11. Stability of a cohesive granular step: slip motion of a corner
of mass M along the failure plane at incipient failure. L and H are
respectively the horizontal extent of the failing corner and the height
of the step; ` is the length of the failure plane, and α its orientation
with the horizontal.
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FIG. 12. Friction coefficient as a function of the reduced pressure P∗

defined as: µ = tanϕ for the simulations, and as µ∗ = τ/σn for the
experimental and numerical data from13,20.

produces experimental and numerical observation for model
granular matter34,36.
We suppose the equilibrium of the material along a failure
plane of length `, oriented at an angle α with the horizontal, as
illustrated in Figure 11. Assuming that the shear stress τ and
the normal stress σn satisfy the Mohr-Coulomb model, intro-
ducing a macroscopic cohesion τc, and a coefficient of internal
friction µ , the equilibrium of the upper corner is compromised
when

τ = µσn + τc,

leading to:

Mgsinα = µMgcosα + τc`, (2)

where M is the mass of the failing part23,34,44. Denoting H
the height of the step, and ρ the density of the material, we
have M = 1

2 ρH2/ tanα , and ` = H/sinα . Equation (2) can
readily be written in the form:

H =
2τc

ρg
1

(cosα sinα−µ cos2 α)
(3)
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which, considering the internal angle of friction ϕ such that
µ = tanϕ , becomes

H =
2τc

ρg
cosϕ

cosα sin(α−ϕ)
. (4)

The minimum height Hy of a failing step, namely a system
just passed the equilibrium, is thus given by minimising the
function 1/cosα sin(α−ϕ). The latter having a minimum at
cos(2α−ϕ) = 0, the failure orientation of a system of height
Hy satisfies α = π/4+ϕ/2. Conversely, the friction angle is
given by ϕ = 2(α−π/4).
If the simulations were close to equilibrium, namely H ' Hy,
the evolution of the failure orientation with cohesion in
Figure 7 could be interpreted in terms of frictional properties.
The coefficient of internal friction can be estimated as
µ = tanϕ , with equation (4) leading to ϕ = 2(α − π/4)
at H ' Hy. The outcome for the numerical failures are
plotted in Figure 12, together with the data from13,20. While
ϕ = 2(α − π/4) increases with the strength of contact
adhesion at small values of Bog, following the evolution
of the failure orientation, a weakening mechanism would
appear at larger Bog values, with friction slowly decreasing
with increasing adhesion strength. Since stronger adhesive
forces at contact between grains signify a more solid-like
interface between two sliding blocks at failure, and less
erratic dissipative collisions, stronger cohesion resulting in
smaller friction seems a sensible scenario.

The decrease of friction properties with cohesion was (to our
knowledge) only reported in a numerical study of the flow of
the third body in Iordanoff et al 200526, considering plane
shearing and intense values of contact adhesion. By contrast
apparent friction increasing with cohesion is consistently
observed experimentally and numerically13,20,24.

However, applying ϕ = 2(α − π/4), which is a result
stemming from a stability analysis when the yielding height
Hy is just reached, is not a straightforward valid operation for
our systems. Indeed, their height H is well above Hy for all
values of Bog studied here (see section II B). Beside, α was
shown to vary with the height of the systems34,40,45. Hence
α(H > Hy) is not equivalent to α(H 'Hy) in terms of failure
orientation, hence in terms of friction. Drawing definite
conclusion on the frictional properties from the behaviour of
α with Bog is thus not possible here.

VI. AN IDEAL COULOMB MATERIAL?

The equilibrium analysis performed above relies on the
assumption that the cohesive granular material is an ideal
Coulomb material, satisfying, at incipient slip, the simple rela-
tion between shear stress τ , normal stress σn, internal friction
µ and cohesion τc

43:

τ = µσn + τc.

The value of the macroscopic cohesion τc is not straightfor-
ward to estimate. For both experimental and numerical stud-
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FIG. 13. Density of cohesive contacts Zc as a function of time for
three different values of contact adhesion Bog.
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FIG. 14. Mean density of cohesive contacts 〈Zc〉 as a function of
the contact adhesion Bog number, computed over the collapse time
interval t/T ∈ [0:1.3] and the failure time interval t/T ∈ [0.1:0.3].

ies, τc is often derived from series of measurements of (τ,σn)
for flows with a given cohesion; the locus of the affine approx-
imation of the resulting set of points provides an estimate of
τc

5,6,11,15. Such a measurement is not feasible in the present
collapse configuration.
We can however aim at an estimation of τc based on a theoret-
ical prediction proposed in Richefeu et al 200611, and devel-
oped for 2D systems in Abramian et al 202023.
The analysis developed by Richefeu et al11 from Rumpf
equation2 relates the value of the tensile strength, in the ab-
sence of confining pressure, to the contact adhesive interac-
tions, and the structure of the packing, for a 3D wet gran-
ular media. We apply the same reasoning, modifying it for
2D quasi-mono-disperse systems, and using expression (1)
for the contact adhesive force Fc, rather than capillary forces.
Following11, the density of cohesive contacts Zc is given by
half the mean number of cohesive contacts per particle, di-
vided by the particle free volume in 2D (i.e. the average par-
ticle volume Vp = πd2/4 divided by the solid fraction φ ):

σc =
φZc

πd
Fc, (5)
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with φ the packing volume fraction and Zc the mean number
of cohesive contacts per particle. Considering the contact ad-
hesive forces Fc = mgBog = ρgVpBog, the theoretical predic-
tion for the macroscopic cohesion of an assembly of cohesive
particles τc = µσc is given by:

τc =
d
4

µφZc×ρg×Bog, (6)

where µ is the internal coefficient of friction.
Since the present simulations involve initial states prepared
using a zero friction to generate dense packings, sintered af-
terwards using a large value of contact adhesion Bog= 100, all
our systems present a large initial packing fraction φ ' 0.82,
which does not vary until the failure crack has developed.
In the following, we will thus consider the constant value
φ = 0.82.
Estimating τc also requires that we have an estimate for the
internal friction µ , different from the apparent friction µ∗

computed in section IV. We simply set µ = 0.3, which seems
a reasonable value.
Finally, we need to estimate Zc. Although any contact can
withstand a tensile state, not all contact do exist in this
peculiar state. In the following, we consider a contact to
be cohesive if it actually carries a tensile force. The time
evolution of Zc for three values of Bog, corresponding to
a weak, medium and strong contact adhesion, is shown in
Figure 13. Plotting Zc as a function of Bog, averaged over
either the collapse interval or the failure interval, shows how
larger contact adhesion coincides with a larger density of
cohesive contacts (displayed in Figure 14): Zc ' 0.3 for
Bog= 2, while Zc ' 1.2 for Bog= 60. For comparison, the
mean number of contacts per particle (or "coordinance"), is
around 3.5.
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101 102

τ c
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2
(µ
N
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Fadh(µN)

Zc(Bog)
Zc = 1.2
Zc = 3.5
Gans(2020)

FIG. 15. Relation between the theoretical prediction of the macro-
scopic cohesive stress τcd2 (equation (6)) and the contact adhesive
force Fadh for different value of the density of cohesive contacts Zc.
The dashed line shows the prediction for the experimental data from
Gans 202015, together with the corresponding range of values.

In a first try, we estimate the cohesive stress τc considering
the value of Zc for each series of simulations independently,
as they are given in Figure 14 for the failure interval. The

outcome of relation (6) is plotted Figure 15. Expectedly, the
plot reflects the behaviour of Zc(Bog) in Figure 14.
In a second try, following11,15, we take a constant value for
Zc. We set Zc = 1.2, corresponding to the case Bog= 60. The
plot becomes linear, but with a lower proportionality constant
than the prediction describing the experimental data from15,
due to the fact that we have not considered that all contacts
are cohesive as in11,15.
Eventually, if we consider that all contacts are cohesive
following11,15, equating Zc with the grains mean coordination
number Zc = 3.5, the result of the simulations becomes very
similar to that of Gans et al (2020)15.
Figure 15 is a good illustration of the way the relation
between macroscopic stress and contact adhesion is very
dependent on the details of the cohesive texture and the way it
is estimated. It also shows that the numerical cohesive matter
simulated here behaves very similarly to the experimental
cohesion-controlled material of Gans et al15 in terms of the
dependance τc ∝ Fc.
However, Gans et al 202015, as we did, assume a constant
coefficient µ . A constant volume fraction φ , and a constant
density of cohesive contacts, are also chosen. The latter are
however very dependant on the system cohesion24,25. Hence,
Figure 15 and the linearity of the relation τc ∝ Fc/d does not
give informations on the dependence of τc on the internal
friction.
If the material obeys an ideal Coulomb behaviour, the
stress state satisfies τ = µσn + τc. It τc = µσc, then
µ = τ/(σn−σc), and an increase of the contact adhesion and
of σc may coincide with an increase of µ . If we do not assume
τc = µσc, we have µ = (τ − τc)/σn, and an increase of the
contact adhesion and of τc may coincide with a decrease of µ .

This is what is observed in Iordanoff et al (2005)26, although
the apparent friction (and not the Coulombic friction) is
considered. Another difference is that 26 considers much
smaller values of the reduced pressure P∗ (about 10 times
smaller), i.e. much stronger adhesive forces. Iordanoff et
al (2005) attribute the decrease of friction with adhesion to
the thinning of the shear zone where grains are irreversibly
deformed. In that sense, their observation bears analogy
with the scenario proposed in the present paper (section V),
invoking a failure plane resembling more and more a solid-
solid sliding interface when contact adhesion increases, and
resembling less and less a collection of erratically colliding
particles dissipating energy.

VII. DISCUSSION

Simulation of the failure of cohesive granular steps, with
varying intensity of the contact adhesive force, are presented.
Failures are characterised through a careful analysis of the
grains displacement, which allows for deriving a chronology
of the failure events. Focusing on the interface between
moving and static material, we infer the position of the
failure plane, found to be compatible with a linear shape, in
agreement with previous observations34,36,40. Plotting the
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failure orientation with the horizontal against the intensity
of the contact adhesion, we disclose a non-monotonous
evolution.
Although the column collapse is an intrinsically transient
heterogenous phenomena, it can be compared with experi-
mental and numerical study of wet shear flows13,20, provided
we adopt a definition of the reduced pressure relevant to the
collapse configuration. Doing so, and computing the apparent
friction coefficient, we observe consistent behaviours. The
weak values of friction in our simulation points at the short-
range of the contact adhesion model implemented here, which
does not consider any debonding distance characteristic of
capillary cohesion20. Our model nevertheless reproduces the
behaviour of sticky polymer-coated grains15, in particular
the dependence between the macroscopic cohesion and the
contact adhesion, and the range of friction explored.

Assuming that the material behaves as an ideal Coulomb
material allows for writing the equilibrium of an edge of
material at incipient failure, for which the failure angle is re-
lated to the internal frictional properties of the material. This
provides an interpretation of the non-monotonous behaviour
of the orientation of the failure plane. Although the systems
studied here are past equilibrium and incipient failure, the
non-monotonous evolution of the failure orientation may
hint at a cohesion-induced weakening mechanism, by which
stronger contact adhesion involves weaker friction.
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