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In binary mixtures, the lifetimes of surface bubbles can be five orders of magnitude longer
than those in pure liquids because of slightly different compositions of the bulk and the
surfaces, leading to a thickness-dependent surface tension of thin films. Taking advantage
of the resulting simple surface rheology, we derive the equations describing the thickness,
flow velocity and surface tension of a single liquid film, using thermodynamics of ideal
solutions and thin film mechanics. Numerical resolution shows that, after a first step of
tension equilibration, the Laplace-pressure-driven flow is associated with a flow at the
interface driven by an induced Marangoni stress. The resulting parabolic flow with mobile
interfaces in the film further leads to its pinching, eventually causing its rupture. Our model
paves the way for a better understanding of the rupture dynamics of liquid films of binary
mixtures.
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1. Introduction
The lifetimes of foams and surface bubbles are primarily governed by the drainage
and rupture processes of the thin liquid films surrounding bubbles. These processes
are influenced by various intricate – and sometimes difficult to control – factors,
including contamination Lhuissier & Villermaux (2012), physicochemical properties of
added surfactants (Petkova et al. 2020), evaporation Pasquet et al. (2022), biomolecules
(Choudhury et al. 2021) and history of thin film formation (Klaseboer et al. 2000; Zawala
et al. 2023), which may induce variations in lifetimes over several orders of magnitude.
In the presence of surface-active species, a comprehensive description of the drainage
of thin films is made difficult even in controlled conditions, particularly because of
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the coupling of flow with the concentration field of the species. Further complexity
arises from the timescales of surface and bulk exchanges of surfactant, which can be
comparable to the drainage time (Petkova et al. 2021). Generally, the surface rheology
that results from those effects is accounted for by using a velocity boundary condition
corresponding to an immobile interface with air (Aradian et al. 2001), leading to a
Poiseuille flow within the film. Although this is a fair assumption for an interface with
concentrated surfactants, culminating in a simple lubrication equation for film thickness,
it decouples the interfacial shear-stress from the bulk flow caused by drainage. Imposing
mobile interfaces, and accounting for the continuity of tangential stress, one can obtain an
integro-differential equation for filmheight (Yiantsios & Davis 1990). However, inclusion
of additional Marangoni stress necessitates additional evolution equations for closure. This
has been done in the past to some extent (Chan et al. 2011; Frostad et al. 2013) where the
parabolic flow is coupled with empirical surface tension variations. Breward & Howell
(2002) present a mathematically robust model for a linear variation of surface tension
with surfactant concentration, an approximation that is valid only for dilute solutions.
The complex surface rheology generally exhibited by surfactant solutions prevents the
universality of models.

Recently, the foaming of oil mixtures has attracted renewed interest (Chandran Suja
et al. 2018; Lombardi et al. 2023). The relatively stable foams that can form in these
mixtures without any surfactant have been evidenced decades ago (Ross & Nishioka 1975)
and are currently observed in many processes of the oil industry, for example, car tank
filling and crude oil extraction, or in the food industry, for instance, in frying oils. Anti-
foaming molecules are then often required to increase efficiency (Pugh 1996). In the
absence of evaporation, it has been shown that the enhanced lifetimes of thin films in
mixtures stem from slight differences between the bulk and surface concentrations of
different species, leading to thickness-dependent surface tensions of thin films (Tran
et al. 2020, 2022). Since the diffusion times of small molecules are very short, bulk
and interfaces can be considered to be in thermodynamical equilibrium (the time for a
molecule to travel across the thickness of a film is h2/D ∼ 1 ms for a 1−µm-thick film
and taking a typical diffusion coefficient, D ∼ 10−9m2 s−1). Thus, the surface rheology of
mixtures reduces to Gibb’s elasticity (Tempel et al. 1965). It leads to an increasing surface
tension of a film with decreasing thickness. Since the concentration differences at stake
remain very small, the variation of surface tension with concentration is linear. In addition,
the disjoining pressure in a film is purely attractive, therefore binary oil mixtures constitute
much simpler systems than surfactant solutions to study the drainage mechanisms of liquid
films. Existing models developed for the pinching of films of surfactant solutions cannot
predict quantitative lifetimes observed in thin films of binary mixtures (Tran et al. 2022).

In the presence of Marangoni effects, the process of film drainage and rupture may be
divided into three stages (Lhuissier & Villermaux 2012). The first stage comprises the
thin film formation; from spherical surfaces to locally flat surfaces. In the case of binary
mixtures, this shape is described using a mechanism of equilibration of film tension by a
balance between surface tension gradient and the pressure gradient due to Laplace pressure
difference. This is reached in a few milliseconds. Naturally, a second stage dynamics
ensues, relaxing the pressure gradient and resulting in a more complicated film drainage
scenario. The relaxation causes the film to drain via dimpled (marginal) pinching, as also
described in soap films (Aradian et al. 2001; Trégouët & Cantat 2021). At one point, the
film becomes so thin that a third stage of van der Waals attraction becomes effective and
causes spontaneous rupture (Shah et al. 2021). The film lifetime is mostly determined by
the second stage of film drainage when a pinched part reaches a critical thickness, which
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Figure 1. For the scope of this study, we consider a ligament of fluid pinned between two walls at a
distance L. Initially, a flat-film profile of thickness, hi = 500 nm, is prescribed in the middle (spanning over
L/2 = 0.2 mm) conjoined to a Plateau border of radius, Rb = 1 mm, using experimental estimations taken from
Tran et al. (2022). Using these constraints, we obtain H� 16 µm.

is much longer than the initial viscous stretching phase and the final spontaneous rupture
due to van der Waals interactions.

In this article, we model the first two stages of marginal pinching of films of binary
mixtures. We follow a similar approach as Breward & Howell (2002) and we do not
impose immobile interfaces a priori, but instead we consider the coupling of the flow
and concentration fields of species. Taking profit of the well-controlled physico-chemistry
of mixtures, we obtain an evolution equation for surface tension, here in the context of
binary mixtures, using thermodynamic principles of ideal solution theory. As a result,
the parameters defining the surface tension gradient are fully determined by the chosen
bulk concentration of the mixture species. The pinching dynamics is thus described by
three one-dimensional (1-D) coupled evolution equations for film thickness h, mean flow
velocity u and surface tension γ , which allows a quantitative description of the drainage
of thin films and the prediction of their lifetimes.

The article is structured as follows. Section 2 introduces the conservation laws used to
model the Marangoni-stress driven system. Section 3 showcases the detailed derivation of
the closed-form model using three small parameters in the problem. Further, details of the
numerical simulations are described and validated. In § 4, we discuss the main findings
of the simulations, specifically focusing on: (i) film tension equilibration and (ii) drainage
driven by Marangonistresses generated due to binary mixtures concentration differences.
We elucidate our model predictions in comparison with film-thinning laws reported in past
experiments/scaling theories, and also contrast with other models in the limiting cases.
Finally, we put things into perspective and conclude in § 5.

2. Governing equations
We consider a thin two-dimensional (2-D) liquid film of two miscible liquids, denoted
as 1 and 2; the film is bounded by impenetrable walls at x = ±L/2 and free surfaces at
z = ±h/2. Here, L is the prescribed length of the film and the interfaces are pinned at the
walls with a height 2H as shown in figure 1. Since the volume of the film is too small for an
equilibrium (parabolic) shape to be reached, the film has to drain and further rupture in the
absence of any disjoining pressure. We model the drainage dynamics using conservative
laws for mass, momentum and mixture species. In the following, we use subscripts (x, z, t)
to denote derivatives (∂x , ∂z, ∂t ) in the equations.
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2.1. Conservation of mass and momentum
For mass and momentum balance, we have the Navier–Stokes equations:

ux + vz = 0, (2.1)

ut + uux + vuz = − Px

ρ
+ μ

ρ
[uxx + uzz], (2.2)

vt + uvx + vvz = − Pz

ρ
+ μ

ρ
[vxx + vzz]. (2.3)

Here, ρ and μ are the density and viscosity of the binary mixture which are kept constant;
u and v are the velocity components in the x- and z-directions, respectively. Considering
the upper interface (z = h/2), we have the jump conditions for a free interface. The normal
stress balance reads as

n · T · n = −γ κ, (2.4)

where T = −PI + μ[(∇u) + (∇u)T ] is the stress tensor, the curvature of the free surface
is given by κ = −((hxx/2)/(1 + h2

x/4)3/2) and n = (1/[(1 + h2
x/4)1/2])([(−hx/2), 1]) is

the unit normal vector. It is written explicitly as

P − μ

[ [2vz(1 − h2
x/4) − hx (uz + vx )/2]

1 + h2
x/4

]
= γ κ. (2.5)

We also have the tangential stress balance:

t · T · n = ∇sγ, (2.6)

where t = (1/[(1 + h2
x/4)1/2])([1, (hx/2)]) is the unit tangential vector and ∇s =

[I-nn]·∇ is the curvilinear gradient operator along the interface. It is written explicitly
as

μ(uz + vx )(1 − h2
x/4)1/2 + μhx (vz − ux ) = γx (1 + h2

x/4)1/2. (2.7)

Additionally, we have the kinematic equation for the free surface:

ht + uhx = 2v. (2.8)

Lastly, we take symmetry conditions at z = 0:

uz = 0; v = 0. (2.9)

2.2. Conservation of species
For liquids with typical diffusion coefficient, D ∼ 10−9 m2s−1, the equilibrium between
the interfaces and the bulk is attained very quickly (h2/D � 10−5s for h = 100 nm) as
compared with the characteristic time scales of the problem – which range from 10 ms to
10 s. However, the lateral diffusion of species is slow (L2/D � 103 s for L = 1 mm), so we
can fairly neglect it. Consequently, we only take into account lateral advection of species
and assume that the system is in thermal equilibrium at a given x-location.

We also introduce the relation between species concentrations of the binary mixture film
and its surface tension to couple the flow with the surface tension gradient. Subsequently,
we derive an evolution equation for the surface tension based on a volume conservation
law for the binary mixture.

Let cA be the molar fraction of species A (with the lower surface tension) in the bulk and
ΓA be the corresponding molar fraction in the surface layer. Considering a finite thickness
of the interface, δ � h, the particle numbers per area for species A in a thin differential
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element in x can be written as wA = hcA + 2δΓA. The flux can be expressed as jA =
cAhu + ΓA(2δ)us , where u and us are mean bulk and interfacial velocities, respectively.
Omitting the index A, and using subscripts to denote derivatives, the conservation law for
particle numbers per area for species A is written as

wt = − jx = −(chu + Γ (2δ)us)x . (2.10)

We use thermodynamics of ideal mixtures, using a relation known as Butler’s equation
(Butler 1932; Santos & Reis 2021) to relate the surface molar fraction, Γi , to the bulk
molar fraction ci for the species i in an infinite reservoir. Considering the same molar
surface σi for the two species for simplicity, we have

Γi = ci e
(S(γ (ci )−γi )), (2.11)

where γi is the surface tension of pure liquid species i and S = σi/RT with RT being
the molar thermal energy. Therefore, S(γ − γi ) is the ratio of the energy cost to replace
species i by the mixture at the interface to the thermal energy. For a two species mixture,
we have ΓA + ΓB = 1 and cA + cB = 1. This gives the interfacial tension for an infinite
reservoir,

γ (c) = γB − log
[
1 + c(eS(γB−γA) − 1)

]
S

, (2.12)

where c is the free variable for concentration such that γ = γB for c = 0 (pure species B)
and γ = γA for c = 1 (pure species A). Hereafter, we use the index 0 for reference values at
infinite film thickness. Equation (2.12) results in a sub-linear variation of surface tension
with concentration, as observed in a wide range of binary mixtures. These variations will
be later commented on, and shown in figure 2.

3. Reduced order model
In the lubrication limit (hx � 1), we expand the flow variables (u, v, P) in a Taylor series
with respect to z. The horizontal velocity in the bulk is written as

u(x, z) = u(x) + u Po(z
2/h2 − 1/12) + O(z4), (3.1)

where we have intentionally assigned the leading and first-order velocities as u(0) = u and
u(2)h2 = u Po. This helps us to intuitively realise some quantities described by the species
conservation law (2.10). The average velocity u is responsible for the shape evolution of
the film and the Poiseuille component of the velocity u Po (having by construction a zero
mean value) is responsible only for the relative motion of the surface and the bulk, and thus
for the non-uniform advection of species. The vertical velocity component v is expanded
using continuity (2.1) as

v(x, z) = −ux z − (u Po)x

(
z3/3h2 − z/12

)
+ u Po(2hx z3/3h3) +O(z5), (3.2)

and the pressure as

P(x, z) = P(0) + P(2)
(

z2 − h2/12
)

+O(z4). (3.3)

We put (3.1)–(3.3) into the governing equations for momentum and mass balance (2.1)–
(2.9), and find a leading order problem with an unknown surface-tension field γ (x, t).
Next, using a double expansion Taylor series for the surface tension (for small interfacial
thickness and small variation in species concentration), we obtain an evolution equation
for γ (x, t) using conservation of species (2.10). This provides closure to the leading
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order problem and consequently gives us a set of well-posed evolution equations for
h(x, t), u(x, t) and γ (x, t).

3.1. Evolution equations for film thickness and averaged velocity
The following procedure for deriving the thin film hydrodynamics equations is in the spirit
of the derivation first done in the seminal work of Eggers & Dupont (1994). Enforcing
mass conservation of the film (2.1) into the kinematic equation (2.8) gives us the evolution
equation for the film height (Leal 2007), valid at all orders. We thus write the leading order
kinematic equation as

ht = −(hu + 2δus)x � −(hu)x , (3.4)

Using (3.1)–(3.3) in the x-momentum (2.2), we obtain at leading order,

ut + uux = − P(0)
x

ρ
+ μ

ρ

(
uxx + 2

u Po

h2

)
, (3.5)

while the z-momentum (2.3) is identically satisfied. Similarly, the interfacial stress
conditions given by (2.5) and (2.7) is written at the leading order as

P(0) = − γ hxx

2
− 2μux , (3.6a)

u Po =γx h

μ
+ uxx h2

2
+ 2hhx ux . (3.6b)

Note here that the leading order tangential stress condition (3.6b) is at O(z). Next, we
eliminate P(0) and u Po in (3.5) using (3.6a) and (3.6b), respectively, and neglect γx hxx
with respect to γ0hxxx (small surface tension variation) and 2γx/h (hx � 1), finally
obtaining

ut + uux = 1
ρh

(
2γx + γ0hhxxx

2

)
+ μ

ρ

(4hux )x

h
. (3.7)

Here, γ0 is the reference surface tension of the liquid mixture at infinite film thickness.
We emphasise the subtle point that the 1-D equations (3.4) and (3.7) describes the 2-D
velocity field u(x, z). The second-order velocity term u Po enters the leading order problem
through (3.6b) ensuring tangential stress balance at the interface. As discussed by Tran
et al. (2022), we have a constant film tension at mechanical equilibrium which differs from
the interfacial tension. More precisely, in the limit of small curvatures and slopes, the film
tension reads C = γ (2 − h2

x/4 + hhxx/2), which is the sum of the interfacial tension at
small slopes (cos θ � 1 − h2

x/8) and the force due to the Laplace pressure (
P � γ hxx/2).
The first term of the right-hand side of (3.7) can thus be identified as the gradient of
film tension C at leading order in hx . The last term originates from the classical Trouton
viscosity which is the ratio of elongational to shear viscosity for planar Newtonian viscous
flows appropriate for thin films (Choudhury et al. 2020).

We now have the evolution equations for the film thickness h(x, t) (3.4) and the average
velocity u(x, t) (3.7). To close the system, we need an equation for the unknown surface
tension field γ (x, t). This is derived in the following subsection.

3.2. Evolution equation for surface tension of binary mixtures
To obtain a consistent relation for the surface tension field γ in terms of the species
concentration c and film thickness h, we need to define a new variable, the global molar
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fraction (averaged across z),

X (x, t) = w

h + 2δ
= ch + 2Γ δ

h + 2δ
. (3.8)

In the following, we will use the global molar fraction X as the free variable for species
concentration. In fact, if a homogeneous piece of film is stretched at a constant volume, c
and Γ both vary because the surface to volume ratio of the film varies, while X remains
constant. Thus, the variable X allows us to perform a more comprehensive derivation of
the surface tension dependence on species concentration. Subsequently, an explicit relation
between X and γ can be deduced using (3.8) and (2.11) in (2.12), giving us the following
expression:

γ (X, h) = γB − 1
S

log

(
X (2δ + h)eS(γB−γA)

h + 2δeS(γ−γA)
− X (2δ + h)

h + 2δeS(γ−γA)
+ 1

)
. (3.9)

Since the surface tension varies weakly during the whole pinching process (typically
differences of 10−3γ0 are involved in these phenomena Tran et al. 2020), we can
linearly expand the surface tension of the film. Considering the reference surface tension
γ (X0, ∞) = γ0 = γ (c0), with c0 = X0, we substitute γ0 = γ (c0) for γ on the right-hand
side of (3.9) using (2.12). Next, we expand it using Taylor series both in δ and (X − X0),
X0 being the initial uniform (global) molar fraction. This gives the following exact result
at first order in δ and (X − X0):

γ (X, h) = γ0 + δ

h

2(1 − X0)X0
(
eS
γ − 1

)2
S
(
1 + X0(eS
γ − 1)

)2 − (X − X0)
eS
γ − 1

S(1 + X0
(
eS
γ − 1

)
)
,

(3.10)
where 
γ = γB − γA. We thus have the linearised version of γ :

γ (X, h) = γ0

(
1 + α

h
− β (X − X0)

)
. (3.11)

The term αγ0/h is the Gibbs elastic modulus of the film, or the variation of the interfacial
tension under stretching at constant global molar fraction X (see discussions of Tran et al.
2020,2022) whereas β is a positive dimensionless solutal Marangoni coefficient. Both α

and β depend on the initial composition of the mixture. Combining (2.11) and (2.12), and
using (3.8), we also have

Γ0 − c0 = (1 − X0)X0
(
eS
γ − 1

)
1 + X0

(
eS
γ − 1

) , (3.12)

which leads to

β = 1
γ0S

Γ0 − c0

X0(1 − X0)
= 1

γ0

∂γ

∂c0
(3.13)

and to

α = 2δ(Γ0 − c0)β. (3.14)

The expression in parentheses of (3.11) is a dimensionless quantity which is in practice
O(1) and is always positive, with the choice γA < γB . The second and third terms are
the thickness-dependent and concentration-dependent corrections, respectively, which are
generally at most O(δ/h). Note that (Γ0 − c0) and thus α vanish for X0 = 0 and X0 = 1
which corresponds to the case of pure liquids, where there is no Marangoni effect. In the
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Figure 2. Variation of γ (cA), (Γ0 − c0), β and α with reference concentration, c0, for molar surface 2.5 ×
105 m2mol−1 corresponding to an octane–toluene mixture. The dashed grey line is a straight line for elucidating
the sub-linearity of surface tension with mixture concentration.

binary mixtures we consider, containing molecules of similar sizes, the surface tension
varies sub-linearly with bulk concentration (Tran et al. 2020). This is shown in figure 2 to
build intuition. As can be observed in the left panel, α and β characterise this sub-linearity
in terms of extent and slope respectively.

Finally, the relation between the global concentration X , the height h and the interfacial
tension γ allows us to close the system of equations, leading to the evolution equation for
γ . For this, we first evaluate the derivative of (3.11), obtaining

γt = −αγ0
ht

h2 − βγ0 Xt . (3.15)

To evaluate Xt , we use (3.8) and easily obtain

Xt = wt

h + 2δ
− wht

(h + 2δ)2 . (3.16)

We now introduce the conservation of species (2.10) and volume, ht = −(ūh + 2usδ)x .
Note that we have retained the term with surface velocity us here, unlike in (3.4). This
is done apriori to obtain a physically consistent expression for the evolution of global
molar fraction X , which must vanish when (Γ − c) = 0. Using these two laws and after
some rearrangement, we obtain the species conservation law written for the global molar
fraction X :

Xt = − 1
h + 2δ

(uhcx + us2δΓx ) + (Γ − c)

(h + 2δ)2 [2δuhx + 2δ(u − us)x h]. (3.17)

Next, we evaluate the derivative of global molar fraction, X , (3.8) to determine cx :

cx h =Xx (h + 2δ) + 2δ(Γ − c)hx

h + 2δ
− 2δΓx . (3.18)

Putting the above expression in (3.17), and in the limit of δ � h, we obtain

Xt = −ū Xx + (Γ − c)
2δ

h
(ū − us)x + Γx

2δ

h
(ū − us) . (3.19)
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Here, we realise that the ratio of the third and the second term on the right-hand side
is of the order of 
Γ/Γ � 1. This can be attributed to the indirect relation of Γ

with γ due to (2.11) and (2.12). The third term of (3.19) can thus be safely neglected.
Evaluating the interfacial velocity as us = u|z=h/2, we find (u − us) = −u Po/6. If (Γ − c)
is finite, the parabolic flow contribution will thus advect the bulk and interfacial species
differently and the concentration field X will be modified with a flux proportional to
u Po(Γ − c)h. Further, using (3.19) and (3.4) in (3.15), and back-substituting for Xx =
−γx/βγ0 − αhx/βh2, we obtain

γt + uγx = βγ0

[
αux

βh
+ δ

(Γ − c)

3h
(u Po)x

]
. (3.20)

The leading order tangential stress condition (3.6b) shows that u Po is largely dictated by
the surface tension gradient which can be realised by comparing the scales of the terms on
the right-hand side. Thus, we substitute u Po � γx h/μ, retaining only the dominant term.
Finally, using (3.14) for α and assuming (Γ − c) � (Γ0 − c0) in (3.20), we obtain the final
form of the evolution equation for surface tension:

γt + uγx = δγ0β(Γ0 − c0)

[
2

ux

h
+ 1

3μ

(hγx )x

h

]
, (3.21)

where the right-hand-side is O(δ(Γ0 − c0)/h) and we have neglected higherorder terms.
Equations (3.4), (3.7) and (3.21) constitute a closed-form coupled evolution equation
necessary to describe the drainage in a thin film of binary mixture. They correspond
respectively to the conservation of total mass, momentum and species. The species
conservation is indeed contained implicitly in the third equation (3.21) as the surface
tension is governed by the species fraction and the thickness.

We can compare our set of equations to those used for the pinching dynamics in the
literature. For pure fluids, we have Γ0 = 0 = c0, (3.21) becomes redundant, and thus (3.4)
and (3.7) reduces to the system of equations described by Breward & Howell (2002)
for pure fluids governed only by viscous stretching (plugflow). Imposing an immobile
interface – as done by Aradian et al. (2001) – necessitates the use of a different expansion
for the parabolic velocity, u = u(0)(z2 − h2/4) + O(z4). Using appropriate interfacial
stress conditions, it subsequently gives a single evolution equation for film height: ht =
−γ0(hxxx h3)x/24μ, as derived by Aradian et al. (2001). This is physically relevant in
the limit of concentrated surfactants. However, since tangential stress balance becomes
redundant for an immobile interface, Marangoni stresses cannot be included. Lastly, one
can also compare our model with the dilute-surfactant model described byBreward &
Howell (2002). They model the surface tension evolution using a constitutive law directly
relating the surface tension to the surfactant concentration Γ , subsequently deriving a set
of evolution equations for h and Γ coupled with an ordinary differential equation for the
film tension. That is close to our approach, except the fact that the dynamics of tension
equilibration cannot be captured in their approach, which is efficiently described in our
model due to the evolution equation for velocity (3.7). To the best of our knowledge,
our model is the first that captures simultaneously tension equilibration and Poiseuille
flow. The gradient-dynamics approach (Thiele et al. 2016) is another promising direction
to build a more comprehensive model and inculcate other complex transport channels
like diffusion of species and/or van der Waals forces in a thermodynamically consistent
manner. In the next section, we describe the numerical scheme used to solve the three
equations of our problem.
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3.3. Direct numerical simulation
For the scope of this study, we consider a ligament of fluid pinned between two walls at
a distance L and having a fixed half thickness H= εL at the wall, where ε is an aspect
ratio. This is close to Scheludko cell experiments, but with an added constraint of confined
drainage. However, the pinching dynamics is a localised phenomenon and is expected not
to be significantly affected by the far-field conditions. We choose an arbitrary timescale
based on capillary emptying defined as T =√

ρL3/γ0. The evolution equations (3.4),
(3.7) and (3.21) can then be transformed into a simple dimensionless form:

HT = − (U H)χ , (3.22a)

U T + UUχ =
(

Hχχχ

2
+ 2

Gχ

H

)
+ 4Oh

(
Uχχ + HχUχ

H

)
, (3.22b)

GT + GGχ = M

3

(
6Oh

Uχ

H
+ Gχχ + Hχ Gχ

H

)
. (3.22c)

Here, all lengths and time are scaled by L and T , respectively, using χ = x/L, H = h/L,
T = t/T . Further, the velocity is scaled as u = UL/T and surface tension as γ = Gγ0. We
then obtain the following dimensionless numbers: Ohnesorge number, Oh =√

μ2/ργ0L,
and the effective Marangoni parameter, M = βδ(Γ0 − c0)

√
ργ0/μ2L.

The initial conditions for the variables are taken as G = 1 and U = 0. For H , we
prescribe a film profile described by a Plateau border of constant radius Rb connected
to a flat film at the centre (as also shown in figure 1):

H =hi/2
L at (−L/4 < χ <L/4) , (3.23)

H =hi/2
L +

{
χ2 − (L/4)2

Rb

}
/L at (L/4 < χ <L, −L< χ < −L/4) . (3.24)

Using experimental estimations reported by Tran et al. (2022), we prescribe hi =
500 nm, L= 0.4 mm, Rb = 1 mm and δ = 1 nm. With these constraints, we obtain an
aspect ratio, ε = 4.1 × 10−2. Here, M is set by β, Γ0, which only depends on the mixture
parameters: the concentration c0, the molar surface σ and the thickness of the interface
δ. We have set σ = 2.5 × 105 m2 mol−1 for all the simulation data reported. This value
is close to those for octane and toluene. For boundary conditions, we have Dirichlet
conditions H = H0 and U = 0 at the two boundaries, whereas a homogeneous Neumann
condition is used for G. Note that Gχ = 0 also ensures the additional boundary condition,
Hχχχ = 0, required for H through the tension equilibration condition, H Hχχχ = 4Gχ .

The set of evolution equations (3.22a)–(3.22c) is solved by using a semi-implicit
finite difference scheme on a uniform grid. All the higher derivatives of H, U and G
are discretised implicitly using central finite difference with second-order accuracy. The
timeintegration is done by a first-order accurate Euler forward difference, extrapolated to
second-order accuracy using the Richardson extrapolation scheme (Duchemin & Eggers
2014). Further, an adaptive time-stepping scheme is used based on a local error criterion
of E = max(|H2 − H1|)/ε < 10−6. Here, H1 = H(
T ), H2 = H(2 × 
T/2). Figure 3
shows a grid convergence study done on the system considered, validating the O(
χ2)
accuracy of the numerical scheme. Based on it, we prescribe a resolution of 
χ = 1/600,
which has a relative global error < 1 % and a reasonable computational effort. The
timestep for the given resolution and error criterion varies within 10−3 < 
T < 10−2. The
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Figure 3. Convergence study of pinching film configuration for c0 = 0.02. (a) Relative global error estimation
defined by error = |T − Tref|/Tref, where T is the time to reach a minimum film thickness of h = 100 nm for a
given resolution and Tref is the same time for a reference case of 
χ = 6.25 × 10−4. Blue squares are for the
O(
t2) scheme with adaptive time stepping and red squares are for the O(
t) scheme with fixed timestep of

T = 10−3. (b) Film profiles obtained for different grid resolutions: 
χ = 0.005 (red), 
χ = 0.0025 (green),

χ = 0.0016 (blue), 
χ = 0.00125 (black). Solid lines, O(
t) scheme; dashed lines, O(
t2) scheme.

code is written in python using the numpy library and the discretised semi-implicit linear
equations are solved using linalg.solve function at a given timestep.

4. Drainage dynamics
We observe that the drainage dynamics clearly splits into two regimes: (i) a fast process
of film tension equilibration governed by a plug flow and (ii) a slow process of dimple
drainage governed by a Poiseuille flow. Finally, we quantify the effect of Marangoni stress
and compare it with models available in the literature for the limiting cases.

4.1. Film tension equilibration

The initial tension relaxation process lasts an inertio-capillary time, Tc ∼√
ρL4/γ0H

(Lhuissier & Villermaux 2012). This early dynamics ensures mechanical equilibrium in
film tension, C . Figure 4(a) shows a typical profile obtained from our model simulation
due to an initial stage of tension equilibration. At this moment, the film thickness, h f , is
plotted in figure 4(b) for the range of mixture concentrations. It satisfactorily matches the
analytical scaling: h f ∼√

αR f , previously derived and experimentally verified by Tran
et al. (2022), where R f is the radius at the Plateau border. Moreover, a concentration
gradient has formed between the flat film and the meniscus, inducing a Marangoni stress
that will further slow down the drainage.

Importantly, the set of equations (3.4), (3.7) and (3.21) is different from the case with
an immobile interface assumption. In contrast to the classical approach of prescribing
immobile interfaces and excluding plugflow (Aradian et al. 2001) to obtain a single-field
model for film height, our model describes the leading order plugflow in the film evolution
((3.4), (3.7)) that equilibrates the film tension. However the pressure is not equilibrated and
generates a slow Poiseuille flow. This advects differently species at the interfaces and in
the bulk, leading to a slow modification of the concentration and thus to the surface tension

1007 A39-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

73
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.73


A. Choudhury, L. Duchemin, F. Lequeux and L. Talini

x (mm)

h 
(μ

m
)

Rf

hf

c0

h f
/

√R
f  

(×
10

−3
) 

Γ (mol/mol)c (mol/mol)

1.0

0.5

0.6

0.4

0.2

0.2

0.25

0.20

0.15

0.10

0.05

0
0.4 0.6 0.8 1.00

0

−0.5

−1.0
−0.15 −0.10 −0.05 0 0.05

0.09 0.10 0.11 0.175 0.200

0.10 0.15

(a) (b)

α
 (×

10
−9

) 
√

Figure 4. (a) Tension equilibrated film profile characterised by film thickness, h f , and radius, R f , and
corresponding surface (Γ ) and bulk (c) molar fraction distribution for a thinfilm of octane–toluene mixture
at t ∼ 5 × 10−3 s. (b) Variation of h f (blue) and the Gibbs parameter, α = 2δβ(Γ0 − c0) (red) as a function of
the reference bulk molar fraction of octane, c0 = [0.01 − 0.98].

(3.21). The surface tension evolution in turn modifies the tension equilibrium. Apparently,
the parabolic contribution to the viscous stress is of O(z2) compared with the plug flow
that relaxes the tension gradient, and is negligible. However, it is subtly included in the
derivation of (3.7) and is the source of non-uniform advection of species and thus of the
Marangoni effect, which leads eventually to pinching.

4.2. Dimpled drainage
Figures 5(a) and 5(b) show snapshots for the initial and the final scenarios, respectivly, of
the dimple drainage mechanism governed by Poiseuille flow for a typical binary mixture
of octane–toluene. The spatio-temporal variations of the flow quantities h, c, Γ are also
showcased in the supplementary movie available at https://doi.org/10.1017/jfm.2025.073.
Since the surface tension varies inversely with global concentration and with the film
thickness, the central part of the film has a higher surface tension. This translates to a
Marangoni stress ∼ ∂xγ in the negative direction with respect to capillary drainage. Thus,
throughout the film evolution, a Marangoni flux opposes the capillary flow, spontaneously
maintaining a parabolic flow profile in the bulk, but with a non-zero velocity at the
interfaces.

The driving mechanism for film evolution is the surface tension difference via the
second term on the right-hand side of (3.21). The overall film evolution dynamics thus
work towards minimising this difference (plotted as 
γ/γ0 in figure 5c). Since the
pressure gradient is concomitant with the surface tension gradient (through the balance
of film tension shown in figure 5f ), it is corollary to say either of the two gradients is
minimised during the film evolution. Figure 5(d) shows the model predictions of the mean
(plugflow) and parabolic (Poiseuille flow) velocities, which asymptotically approach to
zero during the remaining process of dimpled drainage. The evolution of curvature at
the pinch location, κ = hxx/2, is shown in figure 5(e). In contrast to the earlier study of
Aradian et al. (2001), we do not observe any scaling with time for the curvature at pinch.
More precisely, the curvature at the pinch essentially remains constant throughout the
entire duration of pinched drainage. Figure 5(g) shows the spatial variation of u and u Po.
The velocities are clearly less localised than the Laplace pressure gradient. This shows that
a change of species concentration induces a velocity in the entire meniscus, predominantly
due to tension balance.
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Figure 5. Spatio-temporal evolution of marginal pinching in octane–toluene mixture: (a) formation of marginal
pinch; (b) thickness of the film reaches hcut . The arrows denote the evolved velocity in the film enveloped
by the velocity magnitude, at the pinch locations, 
Γ = Γ − Γ0 and 
c = c − c0, where Γ0 = 0.1856 and
c0 = 0.1 are reference quantities for surface and bulk molar fraction (for octane), respectively. Evolution of (c)

γ = γmax − γmin across the plateau border; (d) absolute values of velocities at the pinch location: mean u
and Poiseuille u Po components; (e) maximum curvature, κ , at the pinch location. Across the film length at
t = 12.73 s: (f ) dimensionless force/mass due to Laplace pressure gradient Hxxx/2 (P) and Marangoni stress
2Gx/H (M), where F0 = 1.73 × 103 N kg−1; (g) mean velocity u, Poiseuille velocity component u Po.

We now dig deeper into the various mechanisms at play during the film thinning process
showcased in figure 6 and in the supplementary movie. Since our initial condition is
out of force equilibrium, a plug flow develops causing a pure stretching mode which
governs the process of equilibration of the film tension, i.e. a surface tension gradient
develops which balances the Laplace pressure gradient across the Plateau border. This
happens until the inertio-capillary time, Tc ∼ 10−2 s. Note that this can be simply realised
by observing (3.7), where the source term (in parentheses) is minimised, damped by the
Trouton viscosity. The damped oscillations appearing in figure 6 are a manifestation of
this process.

From this time onwards, the plug flow is minimised and the process of surface tension
gradient relaxation comes into play through (3.21). We thus have a period of transition
from a plugflow to a development of a Poiseuilleflow across the thin film.

Once the pressure-driven flow is set up, the main stage of film-thinning follows a
power law dependence, hmin ∼ tn , with a value of n = −0.66 ± 0.06 throughout the
range of mixture concentration, c0. In this context, experimental film-thinning laws for
Marangoni-driven systems are scarcely reported, but an exponent of n = −2/3 has been
experimentally found in the case of thin-film evolution influenced by sparse surfactants
(Lhuissier & Villermaux 2012), non-aqueous binary mixtures (Lombardi et al. 2023) and
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Figure 6. Film evolution at the pinch region, hmin (solid curves) and at the centre, hc (dashed curves) for
octane–toluene mixture. The shaded region corresponds to the initial fast process of film tension equilibration.
Subsequent relaxation of surface tension leads to the film-thinning law: hmin ∼ t−2/3. The molar surface is
σ = 2.5 × 105 m2 mol−1. Inset shows model predictions of pinching times of film Tp (teal) compared with
αμ/γ0 (purple) for octane–toluene mixture. Colour coded circles correspond to c0 values of the main plot.

coalescence of emulsion drops (Borkar & Ramachandran 2021). Some scaling theories
on analogous systems with mobile interfaces but vanishing Marangoni stress have also
reported the same scaling earlier (Yiantsios & Davis 1990; Frostad et al. 2013). Our
model, where the interfacial velocity is governed by a surfactant-like effect predicts close
to this scaling. Earlier models (Klaseboer et al. 2000; Aradian et al. 2001; Shah et al.
2021) for a similar geometry involving Plateau borders, relevant to thin films in foams,
predict a scaling exponent of n = −1/2 when a Poiseuille flow with immobile interfaces
is considered.

Our model predictions of film lifetimes is shown in figure 6 (inset) as a function of
mixture concentrations. To estimate the film lifetime, we choose a cutoff film thickness,
hcut ∼ 50 nm, when it is safe to assume that van der Waals force causes spontaneous
rupture. A precise discussion of the role of Van der Waals force (Shah et al. 2021)
shows that it marginally modifies the pinching dynamics and that the assumption of
rupture occurring when h = hcut is fair. It has been reported earlier experimentally that
the lifetimes of foams and surface bubbles of binary mixture (translated to a lengthscale)
correlate with the Gibbs modulus parameter, α (Tran et al. 2022). Our model reveals a
similar correlation, predicting non-monotonous behaviour with mixture concentration and
is thus able to account for experimental observations despite the geometrical differences.
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Figure 7. Film profiles (red) and flux due to the parabolic part of velocity profile (brown) at T = Tp for varying
Marangoni number, M = 2.72 × 10−6 (dotted), M = 5.4 × 10−6 (dashed), M = 1 × 10−5 (dash-dotted) and
M = 2.48 × 10−5 (solid). The blue solid line is for a pure liquid case (M = 0), where drainage occurs via
viscous stretching (plug flow). The black solid line is the prediction for the model with immobile interface.
γ0 = 2.17 × 10−2 N/m for red and blue solid lines. The initial conditions for h is the same as described in
figure 1 for all the cases.

4.3. Effect of Marangoni stress
We finally present quantitative data on how the flow driven by Marangoni stress manifests.
Note that the material parameters determining the Marangoni effect enter the problem
through the combined Marangoni parameter M (3.22c).

Figure 7 shows film profiles for various values of M . As discussed after (3.19), the
parabolic flow contribution advects bulk and interfacial species differently, modifying X
with a flux ∝ (Γ − c)u Poh. Since u Po ∼ γx h/μ, we have the flux due to the parabolic part
of the velocity profile, Q Po ∼ Gχ H2/Oh, in dimensionless form, assuming (Γ − c) to be
a constant. We also plot Q Po corresponding to the film profiles.

Marangoni stress ∝ Gχ developed due to the initial tension equilibration induces
the flux Q Po. Interestingly, we observe that a larger Marangoni number results in a
weaker Q Po across the pinched region, which can be attributed to larger interfacial
velocities competing with the bulk drainage. This leads to slower advection of the species
concentration (X ) translating to slower relaxation of Gχ and thus longer pinching time,
Tp.

It is noteworthy that as M → 0, the dimpled region shrinks to zero and the film becomes
flat at the centre corresponding to a pure viscous stretching solution with tp ∼ 10−2 s.
However, as soon as a finite M > 0 is introduced, the dynamics changes completely due
to the paradigm shift from a fast plug flow (h ∼ t−2) to a slow parabolic flow (h ∼ t−2/3),
leading to a dimpled solution with tp ∼ 10 s. We have also plotted the prediction for a case
of immobile interface (black solid line) for completeness. This model lies in yet another
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Figure 8. Drainage dynamics of different types of models: black, single-field model for immobile interface
(Aradian et al. 2001); blue, two-field model for viscous stretching in pure liquids (Breward & Howell 2002);
red, three-field model (present work) with c0 = 0.1. We take the same initial film profile (tension equilibrated)
with film thickness, hi = 800 nm, and Plateau border radius, Rb = 2 mm, for all the models.

different paradigm of pure Poiseuille flow (h ∼ t−1/2), and thus cannot be recovered as
a limiting case of our model with linearised surface tension variations. Our model thus
fills the gap between two modelling approaches for Plateau-border-driven thin-film flows.
This is showcased in figure 8, where we have plotted predictions of film thinning law
for minimum height hmin(t) and representative schematic of the velocity profiles across
the film thickness, for various class of models. To sum-up, our model that accounts
simultaneously for Poiseuille flow and tension equilibrium leads to a scaling for pinching
that is different from the classical models that assume either purely Poiseuille flow or only
tension equilibrium (viscous stretching).

5. Conclusions
To summarise, we describe the dynamics of marginal pinching in liquid mixtures. Using
three small parameters in the problem: hx � 1 (lubrication approximation), δ/h � 1
(small interfacial thickness) and (X − X0) � 1 (small variations in species concentration),
we obtain a well-posed set of three coupled evolution equations for film thickness, mean
velocity and surface tension. The model accounts for the interplay between capillary
drainage and a concomitant Marangoni flow without any presumption on the flow. The
parabolic component of the resulting Poiseuille flow is subtly included in the leading
order derivation and additionally appears as a second gradient of surface tension. We
obtain variations of pinching times for binary mixtures in a canonical geometry of a
Scheludko cell that are in agreement with experiments. We observe that the pinching
dynamics is a two step process with well-separated time scales, the fast process being
governed by tension equilibration with a plug flow and a slower process governed by
species advection by Poiseuille flow. Further, the predicted dynamics agrees well with
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qualitative behaviours observed in recent experiments of surface bubbles with sparse-
surfactant effects, for example, the marginal regeneration reported in contaminated water
(Lhuissier & Villermaux 2012), delayed coalescence of droplets of two miscible liquids
(Karpitschka & Riegler 2012) and the tension equilibration process reported in salt
solutions (Liu et al. 2023).

We point out that the estimated pinching times are sensitive to aspect ratio (H/L), length
scales (hi , Rb, δ) and the Ohnesorge number (Oh), but the estimation of timescale for the
marginal pinching process is not trivial and is an interesting objective of a future study.
This requires a careful estimation of the dimensions of pinch region, which must correlate
to the physicochemical parameters of the binary mixture. We emphasise that the model
presented here is versatile in nature, providing a recipe to model other foamy systems
governed by negligible delay in adsorption which could be relevant for dilute surfactant-
like effects.
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