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3CNRS, Surface du Verre et Interfaces, Saint-Gobain, 93300 Aubervilliers, France

(Dated: February 11, 2024)

In binary mixtures, the lifetimes of surface bubbles can be five orders of magnitude longer than
those in pure liquids because of slightly different compositions of the bulk and the surfaces, leading
to a thickness-dependent surface tension of thin films. Taking profit of the resulting simple surface
rheology, we derive the equations describing the thickness, flow velocity and surface tension of a
single liquid film. Numerical resolution shows that, after a first step of tension equilibration, a
parabolic flow with mobile interfaces is associated with film pinching in a further drainage step.
Our model paves the way for a better understanding of the rupture dynamics of liquid films.

The lifetimes of foams and surface bubbles are primar-
ily governed by the drainage and rupture processes of
the thin liquid films surrounding bubbles. These pro-
cesses are influenced by various intricate - and sometimes
difficult to control - factors, including contamination [1],
physicochemical properties of added surfactants [2], evap-
oration [3] and history of thin film formation [4, 5], which
may induce variations in lifetimes over several orders of
magnitude. In the presence of surface active species, a
comprehensive description of the drainage of thin films is
made difficult even in controlled conditions, particularly
because of the coupling of flow with concentration field
of species. Further complexity arises from the timescales
of surface and bulk exchanges of surfactant, which can be
comparable to the drainage time [6]. Generally, surface
rheology is accounted for by using a velocity boundary
condition corresponding to an immobile interface with
air, leading to a Poiseuille flow within the film. Although
this is a fair assumption leading to a simple lubrication
equation for film thickness, it ignores the evolution of
surface tension field in the liquid film.

Recently, the foaming of oil mixtures has attracted re-
newed interest [7, 8]. The relatively stable foams that can
form in these mixtures without any surfactant have been
evidenced decades ago [9], and are currently observed in
many processes of the oil industry, for example car tank
filling and crude oil extraction, or in the food industry, for
instance, in frying oils. Anti-foaming molecules are then
often required to increase efficiency [10]. In the absence
of evaporation, it has been shown that the enhanced
lifetimes of thin films in mixtures stem from slight dif-
ferences between the bulk and surface concentrations of
different species, leading to thickness-dependent surface
tensions of thin films [11, 12]. Since the diffusion times
of small molecules are very short, bulk and interfaces can
be considered to be in thermodyamical equilibrium (the
time for a molecule to travel across the thickness of a
film is h2/D ∼ 1 ms for a 1 µm thick film). Thus, the
surface rheology of mixtures reduces to Gibb’s elasticity
[13]. In addition, the disjoining pressure is purely at-

tractive, therefore binary oil mixtures constitute much
simpler systems than surfactant solutions to study the
drainage mechanisms of liquid films.

Recent insight has been offered on the process of film
drainage and rupture, which may be divided into three
stages [1, 12, 14]. The first stage comprises of the thin
film formation; from spherical surfaces to locally flat sur-
faces. In case of binary mixtures, this shape can be de-
scribed using a mechanism of equilibration of film ten-
sion by a balance between surface tension gradient and
the pressure gradient due to Laplace pressure difference
[12]. This equilibrium shape is reached in a few millisec-
onds. Naturally, a second stage dynamics ensues, relax-
ing the pressure gradient and causing a more complicated
film drainage scenario. The relaxation causes the film to
drain via dimpled (marginal) pinching, as described in
soap films [14, 15]. At one point, the film becomes so
thin that a third stage of van der Waals attraction be-
comes effective and causes spontaneous rupture [16, 17].
The film lifetime is thus mostly determined by the sec-
ond stage of film drainage when a pinched part reaches
a critical thickness, which is much longer than the initial
viscous stretching phase and the final spontaneous rup-
ture due to van der Waals interactions. Existing models
developed for pinching of films of surfactant solutions are
based on immobile interfaces [4, 15, 16], and they can-
not predict quantitative lifetimes observed in thin films
of binary mixtures [12].

In this letter, we formulate a robust model describing
the first two stages of marginal pinching of films of binary
mixtures. Our model presented here does not impose im-
mobile interfaces a priori, and the pinching dynamics is
described by three 1D coupled evolution equations for
film thickness h, mean flow velocity u and surface ten-
sion γ. In the past, models for films with surfactant-like
effects describing parabolic flow with mobile interfaces
have been developed [17, 18]. However, they have a gen-
eral description for surface tension evolution in terms of
surfactant concentration with empirical Marangoni pa-
rameters. In contrast, we obtain an evolution equation
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for surface tension, here in the context of binary mix-
tures, using thermodynamic principles of ideal solution
theory. As a result, the parameters defining the surface
tension gradient are fully determined by the chosen bulk
concentration of the mixture species with lower surface
tension. In general, if physicochemical relations between
surface tension and the source field of surface elasticity
are known (surface excess is well defined), our deriva-
tion approach can be readily used to derive the evolution
equation of surface tension in other systems like sparse
surfactants [1] and electrolyte solutions [17], governed by
linear variation of surface tension.

To test our model, we take a simple geometry of lig-
ament bounded within a characteristic length L, and
thickness at the boundariesH. This configuration is close
to a film in a Scheludko cell. Initially, a flat-film profile of
thickness, hi = 500 nm is prescribed in the middle (span-
ning a length of L/2) conjoined to a Plateau border of
radius, Rb = 1 mm. This is described in details in [19].
The estimations are taken from experimental values re-
ported in [12]. We model the ensuing drainage dynamics
using conservative laws for mass, momentum and mixture
species. In the following, we use subscripts (x, t) to de-
note derivatives (∂x, ∂t) in the equations. The horizontal
velocity is written as u = ū+uPo(z

2/h2−1/12)+O(z4).
The average velocity ū is responsible for the shape evo-
lution of the film, and the velocity uPo - which is propor-
tional to the square root of the variance of the velocity
over the vertical direction - is responsible only for the rel-
ative motion of the surface and the bulk and thus for the
non-uniform advection of species. The mass conservation
of the film writes as:

Dth = −hux, (1)

where the material derivative Dt = ∂t + u∂x ∼ ∂t since
inertia is negligible. The conservation of momentum in
a thin liquid film along with interfacial stress conditions
can be effectively reduced to an evolution equation for u
(see Refs. [19] & [20] for details):

Dtu =
1

ρh

(
2γx +

γ0hhxxx

2

)
+

µ

ρ

(4hux)x
h

. (2)

Here, ρ, µ are the density and viscosity of the liquid mix-
ture respectively and γ0 is the reference surface tension
of the liquid mixture at infinite film thickness. The first
term in eq. (2) can be identified as the gradient of film
tension C at the leading order in hx. More precisely, in
the limit of small curvatures and slopes, it can be written
as C = γ

(
2− h2

x/4 + hhxx/2
)
, as obtained previously

in Ref. [12]. The last term originates from the classi-
cal Trouton viscosity which is the ratio of elongational
to shear viscosity for planar Newtonian viscous flows ap-
propriate for thin films [21].

Lastly, we need to introduce the relation between
species concentration and surface tension, to couple the

flow with the surface tension gradient. As discussed in
[11, 12], under stretching, a film ligament of binary mix-
ture experiences an increase of surface tension. This in-
crease also corresponds to the Gibbs elastic modulus and
is given by αγ0/h, where α is a length related to the con-
centration differences between bulk and interfaces. These
differences are modeled in the framework of the thermo-
dynamics of ideal solutions [22], and we assume similar
molar volume and surface of both constituents for the
sake of simplicity. The resulting length α exhibits a max-
imum value of the order of 10−1 nm, is a function of the
species volume fraction, and vanishes for pure liquids.
Since the surface tension varies weakly during the whole
pinching process (typically differences of 10−3γ0 are in-
volved in these phenomena [11]), we linearly expand the
surface tension of the film according to δ, the thickness of
the interface (about 1 nm), and the global film composi-
tion X = (hc+ 2Γδ) /(h+2δ) around the initial uniform
compositionX0. Here Γ and c are respectively the surface
and volume molar fractions of the species with the lower
surface tension. We can thus write the surface tension
as: γ = γ0 (1 + α/h− β(X −X0)). The term αγ0/h is
the Gibbs elastic modulus of the film whereas β is a pos-
itive dimensionless solutal Marangoni coefficient. If the
composition at the interface Γ and the one in the bulk c
are different, the parabolic flow uPo contribution to the
velocity field will advect differently bulk and interfacial
species and the concentration field X will be modified
with a flux proportional to uPoh(Γ− c). In addition, the
Marangoni stress controls the velocity gradient at the in-
terface and thus uPo is also found to be proportional to
γx. Thus the parabolic velocity field leads to the evo-
lution of X through a term (Γ − c)(hγx)x. Finally, the
relation between the concentration X, the height h and
the interfacial tension γ allows to close the system of
equations leading to the evolution equation for γ. It can
be obtained by the time derivative of the expression for
interfacial tension in terms of δ/h and X − X0 written
above and using the conservation of species. As detailed
in [19], it is written as:

Dtγ = δγ0β(Γ0 − c0)

(
2
ux

h
+

1

3µ

(γxh)x
h

)
, (3)

where c0,Γ0 are the reference bulk and surface concen-
trations (in molar fractions) of the binary mixture re-
spectively. Note that α is explicitly written as α =
δβ(Γ0 − c0). The first term in the r.h.s. account for the
Gibbs’ elasticity, while the second term describe the ef-
fect of the Marangoni stress. The equations (1), (2) and
(3) constitute a system of coupled evolution equations
necessary to describe the drainage inside a thin film of
binary mixture. This system of equations is solved, with
appropriate initial and boundary conditions [19], using a
second-order finite difference scheme, with adaptive time-
step [23]. In the limit of vanishing surface tension gra-
dient for pure fluids because in that case Γ0 = c0, eq.
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FIG. 1. (a) Tension equilibrated film profile and correspond-
ing surface (Γ) and bulk (c) molar fraction distribution for
a thin-film of octane-toluene mixture at t ∼ 5 × 10−3 s. (b)
Variation of tension equilibrated film thickness, hf [blue] and
the Gibbs parameter, α = δβ(Γ0 − c0) [red] as a function of
the reference bulk molar fraction of octane, c0 = [0.01−0.98].

(3) becomes redundant and eqs. (1) and (2) reduce to
a system of equations describing drainage via plug-flow
governed only by viscous stretching [18, 24]. The evolu-
tion of the film from an initially prescribed flat interface
to a flat profile equilibrated in tension and subsequently
to the dimpled shape film thinning is predicted by our
reduced-order numerical model and showcased in a sup-
plemental video [19].

The initial tension relaxation process lasts an inertio-
capillary time, Tc ∼

√
ρL4/γ0H [1]. This early dy-

namics ensures mechanical equilibrium in film tension
C. Fig. 1 (a) shows a typical profile obtained from our
model simulation due to an initial stage of tension equi-
libration. At this moment, the film thickness, hf and
radius at the Plateau border, Rf is plotted in fig. 1 (b)
for the range of mixture concentrations. It satisfactorily
matches the analytical scaling: hf ∼

√
αRf , previously

derived in [12]. When a Marangoni stress exists, the
drainage time becomes much larger giving a film pinch-
ing lifetime, Tp ≫ Tc and eq. (3) then dominates the film
evolution.

It is important to note that the set of eqs. (1) - (3)
is different from the case of an immobile interface as-
sumption used in Refs. [4, 15, 16]. In contrast to the
classical approach of prescribing immobile interfaces and
excluding plug-flow [15], our model describes the lead-
ing order plug-flow in the film evolution (eqs. (1), (2))
that equilibrates the film tension. However the pressure
is not equilibrated and generates a slow Poiseuille flow.
This Poiseuille flow advects differently species at the in-
terfaces and in the bulk, leading to a slow modification
of the concentration and thus to the surface tension (eq.
(3)). The surface tension evolution in turn modifies the
tension equilibrium. Indeed, the parabolic part contri-
bution to the viscous stress is of O(h2) compared to the
plug flow that relaxes the tension gradient, and is ap-
parently negligible. However, it is subtly included in the
derivation of eq. (2) and is the source of non-uniform ad-
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FIG. 2. Evolution of marginal pinching in octane-toluene mix-
ture: (a) formation of marginal pinch; (b) thickness of the
film reaches hc. The arrows denote the evolved velocity in
the film, enveloped by the velocity magnitude at the pinch
locations. ∆Γ = Γ− Γ0 and ∆c = c− c0, where Γ0 = 0.1856
and c0 = 0.1 are reference quantities for surface and bulk mo-
lar fraction (for octane) respectively.

vection of species and thus of the Marangoni effect, that
leads eventually to pinching.

Fig. 2 shows snapshots for the initial (a) and the final
(b) scenarios of the dimple drainage mechanism governed
by Poiseuille flow for a typical binary mixture of octane-
toluene. Since the surface tension varies inversely with
global concentration and with the film thickness, the cen-
tral part of the film has a higher surface tension. This
translates to a Marangoni stress ∼ ∂xγ in the nega-
tive direction with respect to capillary drainage. Thus,
throughout the film evolution, a Marangoni flux opposes
the capillary flow, spontaneously maintaining a parabolic
flow profile in the bulk, but with a non zero velocity at
the interfaces.

The driving mechanism for film evolution is the sur-
face tension difference via the second term in the r.h.s of
eq. (3). The overall film evolution dynamics thus work
towards minimising this difference (plotted as ∆γ/γ0 in
fig. 3(a)). Since the pressure gradient is concomitant
with the surface tension gradient (through the balance
of film tension shown in fig. 3(d)), it is corollary to say
either of the two gradients is minimised during the film
evolution. Fig. 3(b) shows the model predictions of the
mean (plug-flow) and parabolic (Poiseuille flow) veloci-
ties, which asymptotically approach to zero during the
remaining process of dimpled drainage. The evolution
of curvature at the pinch location, κ = hxx/2 is shown
in Fig. 3(c). Contrary to the earlier study of [15], where
they predict a scaling for κ, we do not observe any scaling
for the same, and it essentially remains constant through-
out the pinched draining stage. Note that, in the absence
of van-der Waals’ attractive forces, there is no mecha-
nism for destabilisation and rupture in our model. All
the physical quantities like ∆γ, hmin and u - approach
zero asymptotically. Henceforth, to estimate the film life-
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FIG. 3. Pinching dynamics of a thin film of Octane-Toluene
mixture: evolution of (a) surface tension difference ∆γ =
γmax − γmin across the Plateau border; (b) velocities at the
pinch location: mean (plug-flow) velocity u and parabolic

(Poiseuille flow) velocity upo = u(2)h2
min; (c) maximum cur-

vature, κ at the pinch location. Across the film length at t =
12.73 s: (d) dimensionless force/mass due to Laplace pressure
gradient (P) and Marangoni stress (M) where F0 = 1.73×103

N/Kg. (e) spatial variation of u, surface velocity us, center-
line velocity uc.

time, we choose a cutoff film thickness, hc ∼ 50 nm when
it is safe to assume that van der Waals force causes spon-
taneous rupture. A precise discussion of the role of Van
der Waals force shows that it marginally modifies the
pinching dynamics and that the assumption of rupture
occurring when h = hc is correct [16]. Fig. 3(e) shows
the surface velocity profile across the film length. It is
always opposite compared to the capillary drainage ve-
locity (u or uPo) during the entire duration of the film
evolution.

We now dig deeper into the various mechanisms at
play during the film thinning process showcased in fig. 4
and in the supplemental video [19]. At the very shortest
timescale, the film tension is equilibrated as explained
previously. Since our initial condition is out of this force
equilibrium, a quick transient phase can be observed ini-
tially. Next, a plug-flow develops causing a pure stretch-
ing mode which governs the process of equilibration of
the film tension, i.e., a surface tension gradient develops
which balances the Laplace pressure gradient across the
Plateau border. This happens until the inertio-capillary
time, Tc ∼ 10−2 s. Note that this can be simply realised
by observing eq. (2) where, the source term (in parenthe-
sis) is minimised, damped by the Trouton viscosity. The
damped oscillations appearing in fig. 4 are a manifesta-
tion of this process.

From this time onward, the plug-flow is minimised and
the surface tension gradient relaxation process comes into
play through eq. (3). We thus have a period of transi-
tion from a plug-flow to a development of a Poiseuille-

flow across the thin film. The duration of this transition
phase depends non-monotonically on the mixture concen-
tration. Once the Poiseuille-flow is set up, we have the
main stage of film-thinning which follows a power law de-
pendence. Focusing on the film thinning law, hmin ∼ tn,
we observe a value of n = −0.66 ± 0.06 throughout the
range of mixture concentration, c0. In this context, ex-
perimental film thinning laws are scarcely reported, but
an exponent of n = −2/3 has been experimentally found
at least in the case of thin-film evolution influenced by
sparse surfactants [1]. Our model, being governed by
surfactant-like effect predicts close to this scaling, as
shown in Fig. 4. Earlier models [4, 15, 16], for a sim-
ilar geometry involving Plateau borders, relevant to thin
films in foams, predict a scaling exponent of n = −1/2
when a Poiseuille flow with immobile interfaces is con-
sidered. On the other hand, when a mobile interface is
considered with a plug flow in the bulk, the film thins
very rapidly with an exponent of n = −2 which predicts
the dynamics in thin films of pure liquids; as also re-
ported in Ref. [18]. The model presented in this letter
does not rely on such assumptions and predicts the film
evolution consistent with the experiments of Ref. [1]. To
the best of our knowledge, this is the first time the expo-
nent of n = −2/3 for the film thinning law is predicted
for pinching of thin-films involving Plateau borders.

Finally, we present our model predictions of film life-
times in fig. 4 (inset) as a function of mixture concen-
trations. It has been reported earlier experimentally
that the lifetimes of foams and surface bubbles of binary
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mixture (translated to a length-scale) correlate with the
Gibbs modulus parameter, α [12]. Our model predicts a
similar correlation and is thus able to account for exper-
imental observations despite the geometrical differences.
As a perspective of the current study, we point out that
the estimated times are highly sensitive to aspect ratio
(H/L) and length scales (L, hi, Rb). Further, an esti-
mation of time-scale for the marginal pinching process
requires a careful estimation of the dimensions of pinch
region, which correlate to the physicochemical parame-
ters of the binary mixture.

To summarize, we develop a model describing dynam-
ics of marginal pinching in surfactant-like systems. The
model comprising of coupled evolution equations for film
thickness, mean velocity and surface tension describes the
interplay between capillary drainage and a concomitant
Marangoni flow. The parabolic component of the result-
ing Poiseuille flow is subtly included in the leading order
derivation and additionally appears as a second gradient
of surface tension. In the current letter, we obtain vari-
ations of pinching times for binary mixtures in a canoni-
cal geometry of a Scheludko cell which are in agreement
with experiments. Further, the predicted dynamics agree
well with qualitative behaviors observed in recent exper-
iments of surface bubbles with sparse-surfactant effects,
for example, the marginal regeneration reported in con-
taminated water [1] and the tension equilibration process
reported in salt solutions [17]. The model presented here
is versatile in nature, providing a recipe to model other
foamy systems governed by linear surface tension varia-
tion relevant for dilute surfactant-like effects.
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